from abc import ABC, abstractmethod import numpy as np # the following functions are taken from Ben Southgate: # https://bsouthga.dev/posts/colour-gradients-with-python def hex_to_RGB(hex): """ "#FFFFFF" -> [255,255,255]""" # Pass 16 to the integer function for change of base return [int(hex[i : i + 2], 16) for i in range(1, 6, 2)] def RGB_to_hex(RGB): """[255,255,255] -> "#FFFFFF" """ # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#" + "".join( ["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB] ) def colour_dict(gradient): """Takes in a list of RGB sub-lists and returns dictionary of colours in RGB and hex form for use in a graphing function defined later on.""" return { "hex": [RGB_to_hex(RGB) for RGB in gradient], "r": [RGB[0] for RGB in gradient], "g": [RGB[1] for RGB in gradient], "b": [RGB[2] for RGB in gradient], } def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10): """returns a gradient list of (n) colours between two hex colours. start_hex and finish_hex should be the full six-digit colour string, inlcuding the number sign ("#FFFFFF")""" # Starting and ending colours in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colours with the starting colour RGB_list = [s] # Calcuate a colour at each evenly spaced value of t from 1 to n for t in range(0, n): # Interpolate RGB vector for colour at the current value of t curr_vector = [ int(s[j] + (float(t) / (n - 1)) * (f[j] - s[j])) for j in range(3) ] # Add it to our list of output colours RGB_list.append(curr_vector) return colour_dict(RGB_list) def polylinear_gradient(colours, n): """returns a list of colours forming linear gradients between all sequential pairs of colours. "n" specifies the total number of desired output colours""" # The number of colours per individual linear gradient n_out = int(float(n) / (len(colours) - 1)) # returns dictionary defined by colour_dict() gradient_dict = linear_gradient(colours[0], colours[1], n_out) if len(colours) > 1: for col in range(1, len(colours) - 1): next = linear_gradient(colours[col], colours[col + 1], n_out) for k in ("hex", "r", "g", "b"): # Exclude first point to avoid duplicates gradient_dict[k] += next[k][1:] return gradient_dict class ColourMap(ABC): @abstractmethod def __call__(self, v: float): ... class LinearGradientColourMap(ColourMap): def __init__( self, colours: list[str] | None = ["#ff0000", "#ffffff", "#0000ff"], min_value: float | None = 0, max_value: float | None = 1, bins: int = 100, ): self.colours = polylinear_gradient(colours, bins) self.min, self.max = min_value, max_value def __call__(self, v: float): v = max(0, int((v - self.min) / (self.max - self.min) * 100) - 1) if v >= len(self.colours["hex"]): breakpoint() return self.colours["hex"][v] class RandomColourMap(ColourMap): def __init__(self, random_state: int | list[int] | None = [2, 3, 4, 5, 6]): self.rgen = np.random.default_rng(random_state) def __call__(self, v: float): return RGB_to_hex([x * 255 for x in self.rgen.random(3)])