refactoring

This commit is contained in:
julius 2024-11-10 18:54:23 +01:00
parent d390069609
commit 048d1c0d96
Signed by: julius
GPG Key ID: C80A63E6A5FD7092
2 changed files with 111 additions and 141 deletions

103
colours.py Normal file
View File

@ -0,0 +1,103 @@
from abc import ABC, abstractmethod
import numpy as np
# the following functions are taken from Ben Southgate:
# https://bsouthga.dev/posts/colour-gradients-with-python
def hex_to_RGB(hex):
""" "#FFFFFF" -> [255,255,255]"""
# Pass 16 to the integer function for change of base
return [int(hex[i : i + 2], 16) for i in range(1, 6, 2)]
def RGB_to_hex(RGB):
"""[255,255,255] -> "#FFFFFF" """
# Components need to be integers for hex to make sense
RGB = [int(x) for x in RGB]
return "#" + "".join(
["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]
)
def colour_dict(gradient):
"""Takes in a list of RGB sub-lists and returns dictionary of
colours in RGB and hex form for use in a graphing function
defined later on."""
return {
"hex": [RGB_to_hex(RGB) for RGB in gradient],
"r": [RGB[0] for RGB in gradient],
"g": [RGB[1] for RGB in gradient],
"b": [RGB[2] for RGB in gradient],
}
def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10):
"""returns a gradient list of (n) colours between
two hex colours. start_hex and finish_hex
should be the full six-digit colour string,
inlcuding the number sign ("#FFFFFF")"""
# Starting and ending colours in RGB form
s = hex_to_RGB(start_hex)
f = hex_to_RGB(finish_hex)
# Initilize a list of the output colours with the starting colour
RGB_list = [s]
# Calcuate a colour at each evenly spaced value of t from 1 to n
for t in range(0, n):
# Interpolate RGB vector for colour at the current value of t
curr_vector = [
int(s[j] + (float(t) / (n - 1)) * (f[j] - s[j])) for j in range(3)
]
# Add it to our list of output colours
RGB_list.append(curr_vector)
return colour_dict(RGB_list)
def polylinear_gradient(colours, n):
"""returns a list of colours forming linear gradients between
all sequential pairs of colours. "n" specifies the total
number of desired output colours"""
# The number of colours per individual linear gradient
n_out = int(float(n) / (len(colours) - 1))
# returns dictionary defined by colour_dict()
gradient_dict = linear_gradient(colours[0], colours[1], n_out)
if len(colours) > 1:
for col in range(1, len(colours) - 1):
next = linear_gradient(colours[col], colours[col + 1], n_out)
for k in ("hex", "r", "g", "b"):
# Exclude first point to avoid duplicates
gradient_dict[k] += next[k][1:]
return gradient_dict
class ColourMap(ABC):
@abstractmethod
def __call__(self, v: float): ...
class LinearGradientColourMap(ColourMap):
def __init__(
self,
colours: list[str] | None = ["#ff0000", "#ffffff", "#0000ff"],
min_value: float | None = 0,
max_value: float | None = 1,
bins: int = 100,
):
self.colours = polylinear_gradient(colours, bins)
self.min, self.max = min_value, max_value
def __call__(self, v: float):
v = max(0, int((v - self.min) / (self.max - self.min) * 100) - 1)
if v >= len(self.colours["hex"]):
breakpoint()
return self.colours["hex"][v]
class RandomColourMap(ColourMap):
def __init__(self, random_state: int | list[int] | None = [2, 3, 4, 5, 6]):
self.rgen = np.random.default_rng(random_state)
def __call__(self, v: float):
return RGB_to_hex([x * 255 for x in self.rgen.random(3)])

149
matrix.py
View File

@ -1,121 +1,6 @@
import numpy as np import numpy as np
from abc import ABC, abstractmethod
import svg import svg
from colours import ColourMap
rgen = np.random.default_rng()
# the following functions are taken from Ben Southgate:
# https://bsouthga.dev/posts/colour-gradients-with-python
def hex_to_RGB(hex):
""" "#FFFFFF" -> [255,255,255]"""
# Pass 16 to the integer function for change of base
return [int(hex[i : i + 2], 16) for i in range(1, 6, 2)]
def RGB_to_hex(RGB):
"""[255,255,255] -> "#FFFFFF" """
# Components need to be integers for hex to make sense
RGB = [int(x) for x in RGB]
return "#" + "".join(
["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]
)
def colour_dict(gradient):
"""Takes in a list of RGB sub-lists and returns dictionary of
colours in RGB and hex form for use in a graphing function
defined later on."""
return {
"hex": [RGB_to_hex(RGB) for RGB in gradient],
"r": [RGB[0] for RGB in gradient],
"g": [RGB[1] for RGB in gradient],
"b": [RGB[2] for RGB in gradient],
}
def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10):
"""returns a gradient list of (n) colours between
two hex colours. start_hex and finish_hex
should be the full six-digit colour string,
inlcuding the number sign ("#FFFFFF")"""
# Starting and ending colours in RGB form
s = hex_to_RGB(start_hex)
f = hex_to_RGB(finish_hex)
# Initilize a list of the output colours with the starting colour
RGB_list = [s]
# Calcuate a colour at each evenly spaced value of t from 1 to n
for t in range(0, n):
# Interpolate RGB vector for colour at the current value of t
curr_vector = [
int(s[j] + (float(t) / (n - 1)) * (f[j] - s[j])) for j in range(3)
]
# Add it to our list of output colours
RGB_list.append(curr_vector)
return colour_dict(RGB_list)
def rand_hex_colour(num=1):
"""Generate random hex colours, default is one,
returning a string. If num is greater than
1, an array of strings is returned."""
colours = [RGB_to_hex([x * 255 for x in rgen.rand(3)]) for i in range(num)]
if num == 1:
return colours[0]
else:
return colours
def polylinear_gradient(colours, n):
"""returns a list of colours forming linear gradients between
all sequential pairs of colours. "n" specifies the total
number of desired output colours"""
# The number of colours per individual linear gradient
n_out = int(float(n) / (len(colours) - 1))
# returns dictionary defined by colour_dict()
gradient_dict = linear_gradient(colours[0], colours[1], n_out)
if len(colours) > 1:
for col in range(1, len(colours) - 1):
next = linear_gradient(colours[col], colours[col + 1], n_out)
for k in ("hex", "r", "g", "b"):
# Exclude first point to avoid duplicates
gradient_dict[k] += next[k][1:]
return gradient_dict
class ColourMap(ABC):
@abstractmethod
def __call__(self, v: float): ...
class LinearGradientColourMap(ColourMap):
def __init__(
self,
colours: list[str] | None = ["#ff0000", "#ffffff", "#0000ff"],
min_value: float | None = 0,
max_value: float | None = 1,
bins: int = 100,
):
self.colours = polylinear_gradient(colours, bins)
self.min, self.max = min_value, max_value
def __call__(self, v: float):
v = max(0, int((v - self.min) / (self.max - self.min) * 100) - 1)
if v >= len(self.colours["hex"]):
breakpoint()
return self.colours["hex"][v]
class RandomColourMap(ColourMap):
def __init__(self, random_state: int | list[int] | None = [2, 3, 4, 5, 6]):
self.rgen = np.random.default_rng(random_state)
def __call__(self, v: float):
return RGB_to_hex([x * 255 for x in self.rgen.random(3)])
class MatrixVisualisation: class MatrixVisualisation:
@ -126,13 +11,14 @@ class MatrixVisualisation:
text: bool = False, text: bool = False,
labels: int | list[str] | bool = False, labels: int | list[str] | bool = False,
): ):
self.m, self.n = matrix.shape self.matrix = matrix
self.m, self.n = self.matrix.shape
width = 20 width = 20
height = 20 height = 20
gap = 1 gap = 1
self.text = text self.text = text
self.total_width = (gap + width) * n + gap self.total_width = (gap + width) * self.n + gap
self.total_height = (gap + height) * m + gap self.total_height = (gap + height) * self.m + gap
self.cmap = cmap self.cmap = cmap
self.elements = [] self.elements = []
@ -151,7 +37,7 @@ class MatrixVisualisation:
width=width, width=width,
height=height, height=height,
stroke="transparent", stroke="transparent",
fill=cmap(matrix[i, j]), fill=cmap(self.matrix[i, j]),
) )
) )
if text: if text:
@ -162,7 +48,7 @@ class MatrixVisualisation:
textLength=width / 2, textLength=width / 2,
lengthAdjust="spacingAndGlyphs", lengthAdjust="spacingAndGlyphs",
class_=["mono"], class_=["mono"],
text=f"{matrix[i, j]:.02f}", text=f"{self.matrix[i, j]:.02f}",
) )
) )
@ -278,25 +164,6 @@ class MatrixVisualisation:
def __repr__(self): def __repr__(self):
return f"""Matrix Visualisation: return f"""Matrix Visualisation:
shape: {matrix.shape} shape: {self.matrix.shape}
size: {self.total_width}x{self.total_height} size: {self.total_width}x{self.total_height}
""" """
if __name__ == "__main__":
m, n = 30, 20
matrix = rgen.random(size=(m, n))
colours = ["#f5d72a", "#ffffff", "#2182af"]
# colours = ["#ff0000", "#00ff00", "#0000ff"]
cmap = LinearGradientColourMap(colours, matrix.min(), matrix.max())
# cmap = RandomColourMap()
fig = MatrixVisualisation(matrix, cmap=cmap)
fig.colourbar(labels=["yellow", "white", "blue"])
fig.colourbar(labels=5)
fig.colourbar(labels=[0.2, 0.5, 0.55, 0.66, 1])
filename = "matrix.svg"
print(fig)
with open(filename, "w") as f:
f.write(fig.svg)