129 lines
3.7 KiB
Python
129 lines
3.7 KiB
Python
"""CBC example using the MNIST dataset.
|
|
|
|
This script also shows how to use Tensorboard for visualizing the prototypes.
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import pytorch_lightning as pl
|
|
import torchvision
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import transforms
|
|
from torchvision.datasets import MNIST
|
|
|
|
from prototorch.models.cbc import CBC, ImageCBC, euclidean_similarity
|
|
|
|
|
|
class VisualizationCallback(pl.Callback):
|
|
def __init__(self, to_shape=(-1, 1, 28, 28), nrow=2):
|
|
super().__init__()
|
|
self.to_shape = to_shape
|
|
self.nrow = nrow
|
|
|
|
def on_epoch_end(self, trainer, pl_module: ImageCBC):
|
|
tb = pl_module.logger.experiment
|
|
|
|
# components
|
|
components = pl_module.components
|
|
components_img = components.reshape(self.to_shape)
|
|
grid = torchvision.utils.make_grid(components_img, nrow=self.nrow)
|
|
tb.add_image(
|
|
tag="MNIST Components",
|
|
img_tensor=grid,
|
|
global_step=trainer.current_epoch,
|
|
dataformats="CHW",
|
|
)
|
|
# Reasonings
|
|
reasonings = pl_module.reasonings
|
|
tb.add_images(
|
|
tag="MNIST Reasoning",
|
|
img_tensor=reasonings,
|
|
global_step=trainer.current_epoch,
|
|
dataformats="NCHW",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Arguments
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--epochs",
|
|
type=int,
|
|
default=10,
|
|
help="Epochs to train.")
|
|
parser.add_argument("--lr",
|
|
type=float,
|
|
default=0.001,
|
|
help="Learning rate.")
|
|
parser.add_argument("--batch_size",
|
|
type=int,
|
|
default=256,
|
|
help="Batch size.")
|
|
parser.add_argument("--gpus",
|
|
type=int,
|
|
default=0,
|
|
help="Number of GPUs to use.")
|
|
parser.add_argument("--ppc",
|
|
type=int,
|
|
default=1,
|
|
help="Prototypes-Per-Class.")
|
|
args = parser.parse_args()
|
|
|
|
# Dataset
|
|
mnist_train = MNIST(
|
|
"./datasets",
|
|
train=True,
|
|
download=True,
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307, ), (0.3081, ))
|
|
]),
|
|
)
|
|
mnist_test = MNIST(
|
|
"./datasets",
|
|
train=False,
|
|
download=True,
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307, ), (0.3081, ))
|
|
]),
|
|
)
|
|
|
|
# Dataloaders
|
|
train_loader = DataLoader(mnist_train, batch_size=32)
|
|
test_loader = DataLoader(mnist_test, batch_size=32)
|
|
|
|
# Grab the full dataset to warm-start prototypes
|
|
x, y = next(iter(DataLoader(mnist_train, batch_size=len(mnist_train))))
|
|
x = x.view(len(mnist_train), -1)
|
|
|
|
# Hyperparameters
|
|
hparams = dict(
|
|
input_dim=28 * 28,
|
|
nclasses=10,
|
|
prototypes_per_class=args.ppc,
|
|
prototype_initializer="randn",
|
|
lr=0.01,
|
|
similarity=euclidean_similarity,
|
|
)
|
|
|
|
# Initialize the model
|
|
model = CBC(hparams, data=[x, y])
|
|
# Model summary
|
|
print(model)
|
|
|
|
# Callbacks
|
|
vis = VisualizationCallback(to_shape=(-1, 1, 28, 28), nrow=args.ppc)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer(
|
|
gpus=args.gpus, # change to use GPUs for training
|
|
max_epochs=args.epochs,
|
|
callbacks=[vis],
|
|
track_grad_norm=2,
|
|
# accelerator="ddp_cpu", # DEBUG-ONLY
|
|
# num_processes=2, # DEBUG-ONLY
|
|
)
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader, test_loader)
|