prototorch_models/examples/knn_iris.py
2021-09-10 19:19:51 +02:00

70 lines
1.8 KiB
Python

"""k-NN example using the Iris dataset from scikit-learn."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
X, y = load_iris(return_X_y=True)
X = X[:, [0, 2]]
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.5,
random_state=42)
train_ds = pt.datasets.NumpyDataset(X_train, y_train)
test_ds = pt.datasets.NumpyDataset(X_test, y_test)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=16)
test_loader = torch.utils.data.DataLoader(test_ds, batch_size=16)
# Hyperparameters
hparams = dict(k=5)
# Initialize the model
model = pt.models.KNN(hparams, data=train_ds)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(
data=(X_train, y_train),
resolution=200,
block=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=1,
callbacks=[vis],
weights_summary="full",
)
# Training loop
# This is only for visualization. k-NN has no training phase.
trainer.fit(model, train_loader)
# Recall
y_pred = model.predict(torch.tensor(X_train))
print(y_pred)
# Test
trainer.test(model, dataloaders=test_loader)