68 lines
1.9 KiB
Python
68 lines
1.9 KiB
Python
"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from prototorch.components import initializers as cinit
|
|
from prototorch.datasets.abstract import NumpyDataset
|
|
from prototorch.models.callbacks.visualization import VisSiameseGLVQ2D
|
|
from prototorch.models.glvq import SiameseGLVQ
|
|
from sklearn.datasets import load_iris
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
class Backbone(torch.nn.Module):
|
|
"""Two fully connected layers with ReLU activation."""
|
|
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
|
|
super().__init__()
|
|
self.input_size = input_size
|
|
self.hidden_size = hidden_size
|
|
self.latent_size = latent_size
|
|
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
|
|
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.dense1(x))
|
|
out = self.relu(self.dense2(x))
|
|
return out
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Dataset
|
|
x_train, y_train = load_iris(return_X_y=True)
|
|
train_ds = NumpyDataset(x_train, y_train)
|
|
|
|
# Reproducibility
|
|
pl.utilities.seed.seed_everything(seed=2)
|
|
|
|
# Dataloaders
|
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
|
|
# Hyperparameters
|
|
hparams = dict(
|
|
nclasses=3,
|
|
prototypes_per_class=2,
|
|
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
|
torch.Tensor(y_train)),
|
|
proto_lr=0.001,
|
|
bb_lr=0.001,
|
|
)
|
|
|
|
# Initialize the model
|
|
model = SiameseGLVQ(
|
|
hparams,
|
|
backbone_module=Backbone,
|
|
)
|
|
|
|
# Model summary
|
|
print(model)
|
|
|
|
# Callbacks
|
|
vis = VisSiameseGLVQ2D(x_train, y_train, border=0.1)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader)
|