prototorch_models/examples/gmlvq_iris.py
2021-05-21 17:55:55 +02:00

47 lines
1.3 KiB
Python

"""GMLVQ example using all four dimensions of the Iris dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from sklearn.datasets import load_iris
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
x_train, y_train = load_iris(return_X_y=True)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
nclasses = 3
prototypes_per_class = 1
hparams = dict(
distribution=(nclasses, prototypes_per_class),
input_dim=x_train.shape[1],
latent_dim=x_train.shape[1],
proto_lr=0.01,
bb_lr=0.01,
)
# Initialize the model
model = pt.models.GMLVQ(hparams,
prototype_initializer=pt.components.SMI(train_ds))
# Setup trainer
trainer = pl.Trainer.from_argparse_args(args, )
# Training loop
trainer.fit(model, train_loader)
# Display the Lambda matrix
model.show_lambda()