168 lines
5.7 KiB
Python
168 lines
5.7 KiB
Python
"""Probabilistic GLVQ methods"""
|
|
|
|
import torch
|
|
|
|
from .glvq import GLVQ
|
|
|
|
|
|
# HELPER
|
|
# TODO: Refactor into general files, if useful
|
|
def probability(distance, variance):
|
|
return torch.exp(-(distance * distance) / (2 * variance))
|
|
|
|
|
|
def grouped_sum(value: torch.Tensor,
|
|
labels: torch.LongTensor) -> (torch.Tensor, torch.LongTensor):
|
|
"""Group-wise average for (sparse) grouped tensors
|
|
|
|
Args:
|
|
value (torch.Tensor): values to average (# samples, latent dimension)
|
|
labels (torch.LongTensor): labels for embedding parameters (# samples,)
|
|
|
|
Returns:
|
|
result (torch.Tensor): (# unique labels, latent dimension)
|
|
new_labels (torch.LongTensor): (# unique labels,)
|
|
|
|
Examples:
|
|
>>> samples = torch.Tensor([
|
|
[0.15, 0.15, 0.15], #-> group / class 1
|
|
[0.2, 0.2, 0.2 ], #-> group / class 3
|
|
[0.4, 0.4, 0.4 ], #-> group / class 3
|
|
[0.0, 0.0, 0.0 ] #-> group / class 0
|
|
])
|
|
>>> labels = torch.LongTensor([1, 5, 5, 0])
|
|
>>> result, new_labels = groupby_mean(samples, labels)
|
|
|
|
>>> result
|
|
tensor([[0.0000, 0.0000, 0.0000],
|
|
[0.1500, 0.1500, 0.1500],
|
|
[0.3000, 0.3000, 0.3000]])
|
|
|
|
>>> new_labels
|
|
tensor([0, 1, 5])
|
|
"""
|
|
uniques = labels.unique(sorted=True).tolist()
|
|
labels = labels.tolist()
|
|
|
|
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
|
labels = torch.LongTensor(list(map(key_val.get, labels)))
|
|
|
|
labels = labels.view(labels.size(0), 1).expand(-1, value.size(1))
|
|
|
|
unique_labels = labels.unique(dim=0)
|
|
result = torch.zeros_like(unique_labels, dtype=torch.float).scatter_add_(
|
|
0, labels, value)
|
|
return result.T
|
|
|
|
|
|
def likelihood_loss(probabilities, target, prototype_labels):
|
|
uniques = prototype_labels.unique(sorted=True).tolist()
|
|
labels = target.tolist()
|
|
|
|
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
|
target_indices = torch.LongTensor(list(map(key_val.get, labels)))
|
|
|
|
whole_probability = probabilities.sum(dim=1)
|
|
correct_probability = probabilities[torch.arange(len(probabilities)),
|
|
target_indices]
|
|
wrong_probability = whole_probability - correct_probability
|
|
|
|
likelihood = correct_probability / wrong_probability
|
|
log_likelihood = torch.log(likelihood)
|
|
return log_likelihood
|
|
|
|
|
|
def robust_soft_loss(probabilities, target, prototype_labels):
|
|
uniques = prototype_labels.unique(sorted=True).tolist()
|
|
labels = target.tolist()
|
|
|
|
key_val = {key: val for key, val in zip(uniques, range(len(uniques)))}
|
|
target_indices = torch.LongTensor(list(map(key_val.get, labels)))
|
|
|
|
whole_probability = probabilities.sum(dim=1)
|
|
correct_probability = probabilities[torch.arange(len(probabilities)),
|
|
target_indices]
|
|
|
|
likelihood = correct_probability / whole_probability
|
|
log_likelihood = torch.log(likelihood)
|
|
return log_likelihood
|
|
|
|
|
|
class LikelihoodRatioLVQ(GLVQ):
|
|
"""Learning Vector Quantization based on Likelihood Ratios
|
|
|
|
Based on "Soft Learning Vector Quantization" from Sambu Seo and Klaus Obermayer (2003).
|
|
"""
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__(hparams, **kwargs)
|
|
|
|
self.conditional_distribution = probability
|
|
|
|
def forward(self, x):
|
|
distances = self._forward(x)
|
|
conditional = self.conditional_distribution(distances,
|
|
self.hparams.variance)
|
|
prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item()
|
|
posterior = conditional * prior
|
|
|
|
plabels = torch.LongTensor(self.proto_layer.component_labels)
|
|
y_pred = grouped_sum(posterior.T, plabels)
|
|
|
|
return y_pred
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
X, y = batch
|
|
out = self.forward(X)
|
|
plabels = self.proto_layer.component_labels
|
|
batch_loss = -likelihood_loss(out, y, prototype_labels=plabels)
|
|
loss = batch_loss.sum(dim=0)
|
|
|
|
return loss
|
|
|
|
def predict(self, x):
|
|
probabilities = self.forward(x)
|
|
confidence, prediction = torch.max(probabilities, dim=1)
|
|
prediction[confidence < 0.1] = -1
|
|
return prediction
|
|
|
|
|
|
class RSLVQ(GLVQ):
|
|
"""Learning Vector Quantization based on Likelihood Ratios
|
|
|
|
Based on "Soft Learning Vector Quantization" from Sambu Seo and Klaus Obermayer (2003).
|
|
"""
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__(hparams, **kwargs)
|
|
|
|
self.conditional_distribution = probability
|
|
|
|
def forward(self, x):
|
|
distances = self._forward(x)
|
|
conditional = self.conditional_distribution(distances,
|
|
self.hparams.variance)
|
|
prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item()
|
|
posterior = conditional * prior
|
|
|
|
plabels = torch.LongTensor(self.proto_layer.component_labels)
|
|
y_pred = grouped_sum(posterior.T, plabels)
|
|
|
|
return y_pred
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
X, y = batch
|
|
out = self.forward(X)
|
|
plabels = self.proto_layer.component_labels
|
|
batch_loss = -robust_soft_loss(out, y, prototype_labels=plabels)
|
|
loss = batch_loss.sum(dim=0)
|
|
|
|
return loss
|
|
|
|
def predict(self, x):
|
|
probabilities = self.forward(x)
|
|
confidence, prediction = torch.max(probabilities, dim=1)
|
|
#prediction[confidence < 0.1] = -1
|
|
return prediction
|
|
|
|
|
|
__all__ = ["LikelihoodRatioLVQ", "probability", "grouped_sum"]
|