52 lines
1.2 KiB
Python
52 lines
1.2 KiB
Python
"""Neural Gas example using the Iris dataset."""
|
|
|
|
import numpy as np
|
|
import pytorch_lightning as pl
|
|
from matplotlib import pyplot as plt
|
|
from prototorch.datasets.abstract import NumpyDataset
|
|
from prototorch.models.callbacks.visualization import VisNG2D
|
|
from prototorch.models.neural_gas import NeuralGas
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.preprocessing import StandardScaler
|
|
from torch.utils.data import DataLoader
|
|
|
|
if __name__ == "__main__":
|
|
# Dataset
|
|
x_train, y_train = load_iris(return_X_y=True)
|
|
x_train = x_train[:, [0, 2]]
|
|
scaler = StandardScaler()
|
|
scaler.fit(x_train)
|
|
x_train = scaler.transform(x_train)
|
|
|
|
train_ds = NumpyDataset(x_train, y_train)
|
|
|
|
# Dataloaders
|
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=150)
|
|
|
|
# Hyperparameters
|
|
hparams = dict(
|
|
input_dim=x_train.shape[1],
|
|
num_prototypes=30,
|
|
lr=0.01,
|
|
)
|
|
|
|
# Initialize the model
|
|
model = NeuralGas(hparams)
|
|
|
|
# Model summary
|
|
print(model)
|
|
|
|
# Callbacks
|
|
vis = VisNG2D(x_train, y_train)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer(
|
|
max_epochs=100,
|
|
callbacks=[
|
|
vis,
|
|
],
|
|
)
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader)
|