prototorch_models/examples/gtlvq_moons.py
2021-11-15 11:43:39 +01:00

131 lines
3.2 KiB
Python

"""Localized-GMLVQ example using the Moons dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
# Hyperparameters
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=2)
# Initialize the model
model = pt.models.GTLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
omega_initializer=-pt.initializers.PCALinearTransformInitializer(
train_ds))
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
mode="max",
verbose=False,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
es,
],
weights_summary="full",
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)
"""Localized-GMLVQ example using the Moons dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
# Dataset
train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
batch_size=256,
shuffle=True)
# Hyperparameters
hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=2)
# Initialize the model
model = pt.models.GTLVQ(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
omega_initializer=-pt.initializers.PCALinearTransformInitializer(
train_ds))
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=train_ds)
es = pl.callbacks.EarlyStopping(
monitor="train_acc",
min_delta=0.001,
patience=20,
mode="max",
verbose=False,
check_on_train_epoch_end=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[
vis,
es,
],
weights_summary="full",
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)