62 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Siamese GLVQ example using all four dimensions of the Iris dataset."""
 | |
| 
 | |
| import prototorch as pt
 | |
| import pytorch_lightning as pl
 | |
| import torch
 | |
| 
 | |
| 
 | |
| class Backbone(torch.nn.Module):
 | |
|     """Two fully connected layers with ReLU activation."""
 | |
|     def __init__(self, input_size=4, hidden_size=10, latent_size=2):
 | |
|         super().__init__()
 | |
|         self.input_size = input_size
 | |
|         self.hidden_size = hidden_size
 | |
|         self.latent_size = latent_size
 | |
|         self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
 | |
|         self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
 | |
|         self.relu = torch.nn.ReLU()
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.relu(self.dense1(x))
 | |
|         out = self.relu(self.dense2(x))
 | |
|         return out
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     # Dataset
 | |
|     train_ds = pt.datasets.Iris()
 | |
| 
 | |
|     # Reproducibility
 | |
|     pl.utilities.seed.seed_everything(seed=2)
 | |
| 
 | |
|     # Dataloaders
 | |
|     train_loader = torch.utils.data.DataLoader(train_ds,
 | |
|                                                num_workers=0,
 | |
|                                                batch_size=150)
 | |
| 
 | |
|     # Hyperparameters
 | |
|     hparams = dict(
 | |
|         distribution=[1, 2, 3],
 | |
|         proto_lr=0.01,
 | |
|         bb_lr=0.01,
 | |
|     )
 | |
| 
 | |
|     # Initialize the model
 | |
|     model = pt.models.SiameseGLVQ(
 | |
|         hparams,
 | |
|         prototype_initializer=pt.components.SMI(train_ds),
 | |
|         backbone_module=Backbone,
 | |
|     )
 | |
| 
 | |
|     # Model summary
 | |
|     print(model)
 | |
| 
 | |
|     # Callbacks
 | |
|     vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1)
 | |
| 
 | |
|     # Setup trainer
 | |
|     trainer = pl.Trainer(max_epochs=100, callbacks=[vis], gpus=-1)
 | |
| 
 | |
|     # Training loop
 | |
|     trainer.fit(model, train_loader)
 |