fef73e2fbf
How to reproduce: Run the `glvq_spiral.py` file under `examples/`. The error seems to occur when using a lot of prototypes in combination with the `StratifiedSelectionInitializer`. Using only a prototype per class, or using another initializer like the `StratifiedMeanInitializer` seems to make the problem go away.
57 lines
1.6 KiB
Python
57 lines
1.6 KiB
Python
"""GLVQ example using the spiral dataset."""
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from prototorch.components import initializers as cinit
|
|
from prototorch.datasets.abstract import NumpyDataset
|
|
from prototorch.datasets.spiral import make_spiral
|
|
from prototorch.models.callbacks.visualization import VisGLVQ2D
|
|
from prototorch.models.glvq import GLVQ
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
class StopOnNaN(pl.Callback):
|
|
def __init__(self, param):
|
|
super().__init__()
|
|
self.param = param
|
|
|
|
def on_epoch_end(self, trainer, pl_module, logs={}):
|
|
if torch.isnan(self.param).any():
|
|
raise ValueError("NaN encountered. Stopping.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Dataset
|
|
x_train, y_train = make_spiral(n_samples=600, noise=0.6)
|
|
train_ds = NumpyDataset(x_train, y_train)
|
|
|
|
# Dataloaders
|
|
train_loader = DataLoader(train_ds, num_workers=0, batch_size=256)
|
|
|
|
# Hyperparameters
|
|
hparams = dict(
|
|
nclasses=2,
|
|
prototypes_per_class=20,
|
|
# prototype_initializer=cinit.SSI(torch.Tensor(x_train),
|
|
prototype_initializer=cinit.SMI(torch.Tensor(x_train),
|
|
torch.Tensor(y_train)),
|
|
lr=0.01,
|
|
)
|
|
|
|
# Initialize the model
|
|
model = GLVQ(hparams)
|
|
|
|
# Callbacks
|
|
vis = VisGLVQ2D(x_train, y_train)
|
|
# vis = VisGLVQ2D(x_train, y_train, show_last_only=True, block=True)
|
|
snan = StopOnNaN(model.proto_layer.components)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer(
|
|
max_epochs=200,
|
|
callbacks=[vis, snan],
|
|
)
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader)
|