82 lines
2.1 KiB
Python
82 lines
2.1 KiB
Python
"""Neural Additive Model (NAM) example for binary classification."""
|
|
|
|
import argparse
|
|
|
|
import prototorch as pt
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from matplotlib import pyplot as plt
|
|
|
|
if __name__ == "__main__":
|
|
# Command-line arguments
|
|
parser = argparse.ArgumentParser()
|
|
parser = pl.Trainer.add_argparse_args(parser)
|
|
args = parser.parse_args()
|
|
|
|
# Dataset
|
|
train_ds = pt.datasets.Tecator("~/datasets")
|
|
|
|
# Dataloaders
|
|
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64)
|
|
|
|
# Hyperparameters
|
|
hparams = dict(lr=0.1)
|
|
|
|
# Define the feature extractor
|
|
class FE(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.modules_list = torch.nn.ModuleList([
|
|
torch.nn.Linear(1, 3),
|
|
torch.nn.Sigmoid(),
|
|
torch.nn.Linear(3, 1),
|
|
torch.nn.Sigmoid(),
|
|
])
|
|
|
|
def forward(self, x):
|
|
for m in self.modules_list:
|
|
x = m(x)
|
|
return x
|
|
|
|
# Initialize the model
|
|
model = pt.models.BinaryNAM(
|
|
hparams,
|
|
extractors=torch.nn.ModuleList([FE() for _ in range(100)]),
|
|
)
|
|
|
|
# Compute intermediate input and output sizes
|
|
model.example_input_array = torch.zeros(4, 100)
|
|
|
|
# Callbacks
|
|
es = pl.callbacks.EarlyStopping(
|
|
monitor="train_loss",
|
|
min_delta=0.001,
|
|
patience=20,
|
|
mode="min",
|
|
verbose=True,
|
|
check_on_train_epoch_end=True,
|
|
)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer.from_argparse_args(
|
|
args,
|
|
callbacks=[
|
|
es,
|
|
],
|
|
terminate_on_nan=True,
|
|
weights_summary=None,
|
|
accelerator="ddp",
|
|
)
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader)
|
|
|
|
# Visualize extractor shape functions
|
|
fig, axes = plt.subplots(10, 10)
|
|
for i, ax in enumerate(axes.flat):
|
|
x = torch.linspace(-2, 2, 100) # TODO use min/max from data
|
|
y = model.extractors[i](x.view(100, 1)).squeeze().detach()
|
|
ax.plot(x, y)
|
|
ax.set(title=f"Feature {i + 1}", xticklabels=[], yticklabels=[])
|
|
plt.show()
|