prototorch_models/prototorch/y/architectures/optimization.py
2022-06-12 10:36:15 +02:00

74 lines
2.6 KiB
Python

from dataclasses import dataclass, field
from typing import Type
import torch
from prototorch.y import BaseYArchitecture
from torch.nn.parameter import Parameter
class SingleLearningRateMixin(BaseYArchitecture):
"""
Single Learning Rate
All parameters are updated with a single learning rate.
"""
# HyperParameters
# ----------------------------------------------------------------------------------------------------
@dataclass
class HyperParameters(BaseYArchitecture.HyperParameters):
"""
lr: The learning rate. Default: 0.1.
optimizer: The optimizer to use. Default: torch.optim.Adam.
"""
lr: float = 0.1
optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
# Hooks
# ----------------------------------------------------------------------------------------------------
def configure_optimizers(self):
return self.hparams.optimizer(self.parameters(),
lr=self.hparams.lr) # type: ignore
class MultipleLearningRateMixin(BaseYArchitecture):
"""
Multiple Learning Rates
Define Different Learning Rates for different parameters.
"""
# HyperParameters
# ----------------------------------------------------------------------------------------------------
@dataclass
class HyperParameters(BaseYArchitecture.HyperParameters):
"""
lr: The learning rate. Default: 0.1.
optimizer: The optimizer to use. Default: torch.optim.Adam.
"""
lr: dict = field(default_factory=lambda: dict())
optimizer: Type[torch.optim.Optimizer] = torch.optim.Adam
# Hooks
# ----------------------------------------------------------------------------------------------------
def configure_optimizers(self):
optimizers = []
for name, lr in self.hparams.lr.items():
if not hasattr(self, name):
raise ValueError(f"{name} is not a parameter of {self}")
else:
model_part = getattr(self, name)
if isinstance(model_part, Parameter):
optimizers.append(
self.hparams.optimizer(
[model_part],
lr=lr, # type: ignore
))
elif hasattr(model_part, "parameters"):
optimizers.append(
self.hparams.optimizer(
model_part.parameters(),
lr=lr, # type: ignore
))
return optimizers