64 lines
2.0 KiB
Python
64 lines
2.0 KiB
Python
"""Probabilistic GLVQ methods"""
|
|
|
|
import torch
|
|
from prototorch.functions.competitions import stratified_sum
|
|
from prototorch.functions.losses import (log_likelihood_ratio_loss,
|
|
robust_soft_loss)
|
|
from prototorch.functions.transform import gaussian
|
|
|
|
from .glvq import GLVQ
|
|
|
|
|
|
class ProbabilisticLVQ(GLVQ):
|
|
def __init__(self, hparams, rejection_confidence=1.0, **kwargs):
|
|
super().__init__(hparams, **kwargs)
|
|
|
|
self.conditional_distribution = gaussian
|
|
self.rejection_confidence = rejection_confidence
|
|
|
|
def predict(self, x):
|
|
probabilities = self.forward(x)
|
|
confidence, prediction = torch.max(probabilities, dim=1)
|
|
prediction[confidence < self.rejection_confidence] = -1
|
|
return prediction
|
|
|
|
def forward(self, x):
|
|
distances = self._forward(x)
|
|
conditional = self.conditional_distribution(distances,
|
|
self.hparams.variance)
|
|
prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item()
|
|
posterior = conditional * prior
|
|
|
|
plabels = torch.LongTensor(self.proto_layer.component_labels)
|
|
y_pred = stratified_sum(posterior.T, plabels)
|
|
|
|
return y_pred
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
X, y = batch
|
|
out = self.forward(X)
|
|
plabels = self.proto_layer.component_labels
|
|
batch_loss = -self.loss_fn(out, y, plabels)
|
|
loss = batch_loss.sum(dim=0)
|
|
|
|
return loss
|
|
|
|
|
|
class LikelihoodRatioLVQ(ProbabilisticLVQ):
|
|
"""Learning Vector Quantization based on Likelihood Ratios
|
|
"""
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.loss_fn = log_likelihood_ratio_loss
|
|
|
|
|
|
class RSLVQ(ProbabilisticLVQ):
|
|
"""Learning Vector Quantization based on Likelihood Ratios
|
|
"""
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.loss_fn = robust_soft_loss
|
|
|
|
|
|
__all__ = ["LikelihoodRatioLVQ", "RSLVQ"]
|