prototorch_models/examples/dynamic_pruning.py
Jensun Ravichandran ef6bcc1079 [BUG] Early stopping does not seem to work
The early stopping callback does not work as expected, and crashes at the end of
max_epochs with:

```
~/miniconda3/envs/py38/lib/python3.8/site-packages/pytorch_lightning/trainer/callback_hook.py in on_train_end(self)
    155         """Called when the train ends."""
    156         for callback in self.callbacks:
--> 157             callback.on_train_end(self, self.lightning_module)
    158
    159     def on_pretrain_routine_start(self) -> None:

~/work/repos/prototorch_models/prototorch/models/callbacks.py in on_train_end(self, trainer, pl_module)
     18     def on_train_end(self, trainer, pl_module):
     19         # instead, do it at the end of training loop
---> 20         self._run_early_stopping_check(trainer, pl_module)
     21
     22

TypeError: _run_early_stopping_check() takes 2 positional arguments but 3 were given
```
2021-06-02 12:44:34 +02:00

78 lines
2.0 KiB
Python

"""Dynamically prune 'loser' prototypes in GLVQ-type models."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
num_classes = 4
num_features = 2
num_clusters = 1
train_ds = pt.datasets.Random(num_samples=500,
num_classes=num_classes,
num_features=num_features,
num_clusters=num_clusters,
separation=3.0,
seed=42)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256)
# Hyperparameters
prototypes_per_class = num_clusters * 5
hparams = dict(
distribution=(num_classes, prototypes_per_class),
lr=0.3,
)
# Initialize the model
model = pt.models.CELVQ(
hparams,
prototype_initializer=pt.components.Ones(2, scale=3),
)
# Summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(train_ds)
pruning = pt.models.PruneLoserPrototypes(
threshold=0.01, # prune prototype if it wins less than 1%
idle_epochs=30, # pruning too early may cause problems
prune_quota_per_epoch=1, # prune at most 1 prototype per epoch
frequency=5, # prune every fifth epoch
verbose=True,
)
es = pt.models.EarlyStopWithoutVal(
monitor="loss",
min_delta=0.1,
patience=3,
mode="min",
verbose=True,
)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
max_epochs=250,
callbacks=[
vis,
pruning,
es,
],
terminate_on_nan=True,
weights_summary=None,
accelerator="ddp",
)
# Training loop
trainer.fit(model, train_loader)