256 lines
7.8 KiB
Python
256 lines
7.8 KiB
Python
"""Unsupervised prototype learning algorithms."""
|
|
|
|
import logging
|
|
import warnings
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
import torchmetrics
|
|
from prototorch.components import Components, LabeledComponents
|
|
from prototorch.components.initializers import ZerosInitializer, parse_data_arg
|
|
from prototorch.functions.competitions import knnc
|
|
from prototorch.functions.distances import euclidean_distance
|
|
from prototorch.modules.losses import NeuralGasEnergy
|
|
from pytorch_lightning.callbacks import Callback
|
|
|
|
from .abstract import AbstractPrototypeModel
|
|
|
|
|
|
class EuclideanDistance(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return euclidean_distance(x, y)
|
|
|
|
|
|
class GNGCallback(Callback):
|
|
"""GNG Callback.
|
|
|
|
Applies growing algorithm based on accumulated error and topology.
|
|
|
|
Based on "A Growing Neural Gas Network Learns Topologies" by Bernd Fritzke.
|
|
"""
|
|
def __init__(self, reduction=0.1, freq=10):
|
|
self.reduction = reduction
|
|
self.freq = freq
|
|
|
|
def on_epoch_end(self, trainer: pl.Trainer, pl_module):
|
|
if (trainer.current_epoch + 1) % self.freq == 0:
|
|
# Get information
|
|
errors = pl_module.errors
|
|
topology: ConnectionTopology = pl_module.topology_layer
|
|
components: pt.components.Components = pl_module.proto_layer.components
|
|
|
|
# Insertion point
|
|
worst = torch.argmax(errors)
|
|
|
|
neighbours = topology.get_neighbours(worst)[0]
|
|
|
|
if len(neighbours) == 0:
|
|
logging.log("No Neighbour pair found")
|
|
return
|
|
|
|
neighbours_errors = errors[neighbours]
|
|
worst_neighbour = neighbours[torch.argmax(neighbours_errors)]
|
|
|
|
# New Prototype
|
|
new_component = 0.5 * (components[worst] +
|
|
components[worst_neighbour])
|
|
|
|
# Add component
|
|
pl_module.proto_layer.add_components(
|
|
initialized_components=new_component)
|
|
|
|
# Adjust Topology
|
|
topology.add_prototype()
|
|
topology.add_connection(worst, -1)
|
|
topology.add_connection(worst_neighbour, -1)
|
|
topology.remove_connection(worst, worst_neighbour)
|
|
|
|
# New errors
|
|
worst_error = errors[worst].unsqueeze(0)
|
|
pl_module.errors = torch.cat([pl_module.errors, worst_error])
|
|
pl_module.errors[worst] = errors[worst] * self.reduction
|
|
pl_module.errors[
|
|
worst_neighbour] = errors[worst_neighbour] * self.reduction
|
|
|
|
trainer.accelerator_backend.setup_optimizers(trainer)
|
|
|
|
|
|
class ConnectionTopology(torch.nn.Module):
|
|
def __init__(self, agelimit, num_prototypes):
|
|
super().__init__()
|
|
self.agelimit = agelimit
|
|
self.num_prototypes = num_prototypes
|
|
|
|
self.cmat = torch.zeros((self.num_prototypes, self.num_prototypes))
|
|
self.age = torch.zeros_like(self.cmat)
|
|
|
|
def forward(self, d):
|
|
order = torch.argsort(d, dim=1)
|
|
|
|
for element in order:
|
|
i0, i1 = element[0], element[1]
|
|
|
|
self.cmat[i0][i1] = 1
|
|
self.cmat[i1][i0] = 1
|
|
|
|
self.age[i0][i1] = 0
|
|
self.age[i1][i0] = 0
|
|
|
|
self.age[i0][self.cmat[i0] == 1] += 1
|
|
self.age[i1][self.cmat[i1] == 1] += 1
|
|
|
|
self.cmat[i0][self.age[i0] > self.agelimit] = 0
|
|
self.cmat[i1][self.age[i1] > self.agelimit] = 0
|
|
|
|
def get_neighbours(self, position):
|
|
return torch.where(self.cmat[position])
|
|
|
|
def add_prototype(self):
|
|
new_cmat = torch.zeros([dim + 1 for dim in self.cmat.shape])
|
|
new_cmat[:-1, :-1] = self.cmat
|
|
self.cmat = new_cmat
|
|
|
|
new_age = torch.zeros([dim + 1 for dim in self.age.shape])
|
|
new_age[:-1, :-1] = self.age
|
|
self.age = new_age
|
|
|
|
def add_connection(self, a, b):
|
|
self.cmat[a][b] = 1
|
|
self.cmat[b][a] = 1
|
|
|
|
self.age[a][b] = 0
|
|
self.age[b][a] = 0
|
|
|
|
def remove_connection(self, a, b):
|
|
self.cmat[a][b] = 0
|
|
self.cmat[b][a] = 0
|
|
|
|
self.age[a][b] = 0
|
|
self.age[b][a] = 0
|
|
|
|
def extra_repr(self):
|
|
return f"agelimit: {self.agelimit}"
|
|
|
|
|
|
class KNN(AbstractPrototypeModel):
|
|
"""K-Nearest-Neighbors classification algorithm."""
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__()
|
|
|
|
self.save_hyperparameters(hparams)
|
|
|
|
# Default Values
|
|
self.hparams.setdefault("k", 1)
|
|
self.hparams.setdefault("distance", euclidean_distance)
|
|
|
|
data = kwargs.get("data")
|
|
x_train, y_train = parse_data_arg(data)
|
|
|
|
self.proto_layer = LabeledComponents(initialized_components=(x_train,
|
|
y_train))
|
|
|
|
self.train_acc = torchmetrics.Accuracy()
|
|
|
|
@property
|
|
def prototype_labels(self):
|
|
return self.proto_layer.component_labels.detach()
|
|
|
|
def forward(self, x):
|
|
protos, _ = self.proto_layer()
|
|
dis = self.hparams.distance(x, protos)
|
|
return dis
|
|
|
|
def predict(self, x):
|
|
# model.eval() # ?!
|
|
with torch.no_grad():
|
|
d = self(x)
|
|
plabels = self.proto_layer.component_labels
|
|
y_pred = knnc(d, plabels, k=self.hparams.k)
|
|
return y_pred
|
|
|
|
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
|
|
return 1
|
|
|
|
def on_train_batch_start(self,
|
|
train_batch,
|
|
batch_idx,
|
|
dataloader_idx=None):
|
|
warnings.warn("k-NN has no training, skipping!")
|
|
return -1
|
|
|
|
def configure_optimizers(self):
|
|
return None
|
|
|
|
|
|
class NeuralGas(AbstractPrototypeModel):
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__()
|
|
|
|
self.save_hyperparameters(hparams)
|
|
|
|
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
|
|
|
|
# Default Values
|
|
self.hparams.setdefault("input_dim", 2)
|
|
self.hparams.setdefault("agelimit", 10)
|
|
self.hparams.setdefault("lm", 1)
|
|
self.hparams.setdefault("prototype_initializer",
|
|
ZerosInitializer(self.hparams.input_dim))
|
|
|
|
self.proto_layer = Components(
|
|
self.hparams.num_prototypes,
|
|
initializer=self.hparams.prototype_initializer)
|
|
|
|
self.distance_layer = EuclideanDistance()
|
|
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
|
|
self.topology_layer = ConnectionTopology(
|
|
agelimit=self.hparams.agelimit,
|
|
num_prototypes=self.hparams.num_prototypes,
|
|
)
|
|
|
|
def training_step(self, train_batch, batch_idx):
|
|
x = train_batch[0]
|
|
protos = self.proto_layer()
|
|
d = self.distance_layer(x, protos)
|
|
cost, order = self.energy_layer(d)
|
|
|
|
self.topology_layer(d)
|
|
return cost
|
|
|
|
|
|
class GrowingNeuralGas(NeuralGas):
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__(hparams, **kwargs)
|
|
|
|
# defaults
|
|
self.hparams.setdefault("step_reduction", 0.5)
|
|
self.hparams.setdefault("insert_reduction", 0.1)
|
|
self.hparams.setdefault("insert_freq", 10)
|
|
|
|
self.register_buffer("errors",
|
|
torch.zeros(self.hparams.num_prototypes))
|
|
|
|
def training_step(self, train_batch, _batch_idx):
|
|
x = train_batch[0]
|
|
protos = self.proto_layer()
|
|
d = self.distance_layer(x, protos)
|
|
cost, order = self.energy_layer(d)
|
|
|
|
winner = order[:, 0]
|
|
|
|
mask = torch.zeros_like(d)
|
|
mask[torch.arange(len(mask)), winner] = 1.0
|
|
winner_distances = d * mask
|
|
|
|
self.errors += torch.sum(winner_distances * winner_distances, dim=0)
|
|
self.errors *= self.hparams.step_reduction
|
|
|
|
self.topology_layer(d)
|
|
return cost
|
|
|
|
def configure_callbacks(self):
|
|
return [
|
|
GNGCallback(reduction=self.hparams.insert_reduction,
|
|
freq=self.hparams.insert_freq)
|
|
]
|