55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
"""Lightning Callbacks."""
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
|
|
|
|
class PruneLoserPrototypes(pl.Callback):
|
|
def __init__(self,
|
|
threshold=0.01,
|
|
idle_epochs=10,
|
|
prune_quota_per_epoch=-1,
|
|
frequency=1,
|
|
verbose=False):
|
|
self.threshold = threshold # minimum win ratio
|
|
self.idle_epochs = idle_epochs # epochs to wait before pruning
|
|
self.prune_quota_per_epoch = prune_quota_per_epoch
|
|
self.frequency = frequency
|
|
self.verbose = verbose
|
|
|
|
def on_epoch_end(self, trainer, pl_module):
|
|
if (trainer.current_epoch + 1) < self.idle_epochs:
|
|
return None
|
|
if (trainer.current_epoch + 1) % self.frequency:
|
|
return None
|
|
ratios = pl_module.prototype_win_ratios.mean(dim=0)
|
|
to_prune = torch.arange(len(ratios))[ratios < self.threshold]
|
|
if self.prune_quota_per_epoch > 0:
|
|
to_prune = to_prune[:self.prune_quota_per_epoch]
|
|
if len(to_prune) > 0:
|
|
if self.verbose:
|
|
print(f"\nPrototype win ratios: {ratios}")
|
|
print(f"Pruning prototypes at: {to_prune.tolist()}")
|
|
cur_num_protos = pl_module.num_prototypes
|
|
pl_module.remove_prototypes(indices=to_prune)
|
|
new_num_protos = pl_module.num_prototypes
|
|
if self.verbose:
|
|
print(f"`num_prototypes` reduced from {cur_num_protos} "
|
|
f"to {new_num_protos}.")
|
|
return True
|
|
|
|
|
|
class PrototypeConvergence(pl.Callback):
|
|
def __init__(self, min_delta=0.01, idle_epochs=10, verbose=False):
|
|
self.min_delta = min_delta
|
|
self.idle_epochs = idle_epochs # epochs to wait
|
|
self.verbose = verbose
|
|
|
|
def on_epoch_end(self, trainer, pl_module):
|
|
if (trainer.current_epoch + 1) < self.idle_epochs:
|
|
return None
|
|
if self.verbose:
|
|
print("Stopping...")
|
|
# TODO
|
|
return True
|