56 lines
1.9 KiB
Python
56 lines
1.9 KiB
Python
import prototorch as pt
|
|
import pytorch_lightning as pl
|
|
from torch.utils.data import DataLoader, random_split
|
|
from torchvision import transforms
|
|
from torchvision.datasets import MNIST
|
|
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
def __init__(self, batch_size=32):
|
|
super().__init__()
|
|
self.batch_size = batch_size
|
|
|
|
# When doing distributed training, Datamodules have two optional arguments for
|
|
# granular control over download/prepare/splitting data:
|
|
|
|
# OPTIONAL, called only on 1 GPU/machine
|
|
def prepare_data(self):
|
|
MNIST("~/datasets", train=True, download=True)
|
|
MNIST("~/datasets", train=False, download=True)
|
|
|
|
# OPTIONAL, called for every GPU/machine (assigning state is OK)
|
|
def setup(self, stage=None):
|
|
# Transforms
|
|
transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
])
|
|
# Split dataset
|
|
if stage in (None, "fit"):
|
|
mnist_train = MNIST("~/datasets", train=True, transform=transform)
|
|
self.mnist_train, self.mnist_val = random_split(
|
|
mnist_train, [55000, 5000])
|
|
if stage == (None, "test"):
|
|
self.mnist_test = MNIST("~/datasets",
|
|
train=False,
|
|
transform=transform)
|
|
|
|
# Return the dataloader for each split
|
|
def train_dataloader(self):
|
|
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
return mnist_train
|
|
|
|
def val_dataloader(self):
|
|
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
return mnist_val
|
|
|
|
def test_dataloader(self):
|
|
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
return mnist_test
|
|
|
|
|
|
class TrainOnMNIST(pl.LightningModule):
|
|
datamodule = MNISTDataModule(batch_size=256)
|
|
|
|
def prototype_initializer(self, **kwargs):
|
|
return pt.components.Zeros((28, 28, 1))
|