prototorch_models/examples/knn_iris.py
2021-05-21 17:55:55 +02:00

48 lines
1.2 KiB
Python

"""k-NN example using the Iris dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from sklearn.datasets import load_iris
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(k=20)
# Initialize the model
model = pt.models.KNN(hparams, data=train_ds)
# Callbacks
vis = pt.models.VisGLVQ2D(data=(x_train, y_train), resolution=200)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
)
# Training loop
# This is only for visualization. k-NN has no training phase.
trainer.fit(model, train_loader)
# Recall
y_pred = model.predict(torch.tensor(x_train))
print(y_pred)