prototorch_models/examples/lvq1_iris.py
2021-06-14 21:08:05 +02:00

75 lines
1.7 KiB
Python

"""LVQ1 example using the Iris dataset."""
import prototorch as pt
import pytorch_lightning as pl
import torch
if __name__ == "__main__":
# Acquire data
from sklearn.datasets import load_iris
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
# Relabel classes
# y_train[y_train == 0] = 3
# y_train[y_train == 1] = 4
# y_train[y_train == 2] = 6
# Dataset
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, shuffle=True)
# Hyperparameters
num_classes = 3
prototypes_per_class = 10
hparams = dict(
distribution={
# class_label: num_prototypes
# 3: 1,
# 4: 2,
# 6: 3,
0: 1,
2: 2,
3: 3,
},
lr=0.001,
)
# Initialize the model
model = pt.models.LVQ1(
hparams,
prototypes_initializer=pt.initializers.SMCI(train_ds),
)
# Check if `num_classes` is correct
print(f"{model.num_classes=}")
assert model.num_classes == 3
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisGLVQ2D(data=(x_train, y_train),
cmap="viridis",
resolution=200,
block=False)
# Setup trainer
trainer = pl.Trainer(
gpus=0,
max_epochs=50,
callbacks=[vis],
# fast_dev_run=1,
)
# Get prototype labels
print(f"Protoype Labels are: ", model.prototype_labels.tolist())
# Training loop
trainer.fit(model, train_loader)