46 lines
1.1 KiB
Python
46 lines
1.1 KiB
Python
import argparse
|
|
|
|
import prototorch as pt
|
|
import pytorch_lightning as pl
|
|
from prototorch.components.initializers import SelectionInitializer
|
|
from prototorch.datasets import Iris
|
|
from prototorch.models.unsupervised import GrowingNeuralGas
|
|
from torch.utils.data import DataLoader
|
|
|
|
if __name__ == "__main__":
|
|
# Command-line arguments
|
|
parser = argparse.ArgumentParser()
|
|
parser = pl.Trainer.add_argparse_args(parser)
|
|
args = parser.parse_args()
|
|
|
|
# Prepare the data
|
|
train_ds = Iris(dims=[0, 2])
|
|
train_loader = DataLoader(train_ds, batch_size=32)
|
|
|
|
# Hyperparameters
|
|
hparams = dict(num_prototypes=2,
|
|
lr=0.1,
|
|
prototype_initializer=SelectionInitializer(train_ds.data))
|
|
|
|
# Initialize the model
|
|
model = GrowingNeuralGas(hparams)
|
|
|
|
# Model summary
|
|
print(model)
|
|
|
|
# Callbacks
|
|
vis = pt.models.VisNG2D(data=train_loader)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer.from_argparse_args(
|
|
args,
|
|
max_epochs=100,
|
|
callbacks=[vis],
|
|
)
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader)
|
|
|
|
# Model summary
|
|
print(model)
|