51 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """GLVQ example using the spiral dataset."""
 | |
| 
 | |
| import argparse
 | |
| 
 | |
| import pytorch_lightning as pl
 | |
| import torch
 | |
| 
 | |
| import prototorch as pt
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     # Command-line arguments
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser = pl.Trainer.add_argparse_args(parser)
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     # Dataset
 | |
|     train_ds = pt.datasets.Spiral(num_samples=600, noise=0.6)
 | |
| 
 | |
|     # Dataloaders
 | |
|     train_loader = torch.utils.data.DataLoader(train_ds,
 | |
|                                                num_workers=0,
 | |
|                                                batch_size=256)
 | |
| 
 | |
|     # Hyperparameters
 | |
|     num_classes = 2
 | |
|     prototypes_per_class = 20
 | |
|     hparams = dict(
 | |
|         distribution=(num_classes, prototypes_per_class),
 | |
|         transfer_function="sigmoid_beta",
 | |
|         transfer_beta=10.0,
 | |
|         lr=0.01,
 | |
|     )
 | |
| 
 | |
|     # Initialize the model
 | |
|     model = pt.models.GLVQ(hparams,
 | |
|                            prototype_initializer=pt.components.SSI(train_ds,
 | |
|                                                                    noise=1e-1))
 | |
| 
 | |
|     # Callbacks
 | |
|     vis = pt.models.VisGLVQ2D(train_ds, show_last_only=True, block=True)
 | |
| 
 | |
|     # Setup trainer
 | |
|     trainer = pl.Trainer.from_argparse_args(
 | |
|         args,
 | |
|         callbacks=[vis],
 | |
|         terminate_on_nan=True,
 | |
|     )
 | |
| 
 | |
|     # Training loop
 | |
|     trainer.fit(model, train_loader)
 |