prototorch_models/examples/ng_iris.py
2021-06-04 22:21:28 +02:00

59 lines
1.5 KiB
Python

"""Neural Gas example using the Iris dataset."""
import argparse
import prototorch as pt
import pytorch_lightning as pl
import torch
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from torch.optim.lr_scheduler import ExponentialLR
if __name__ == "__main__":
# Command-line arguments
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# Prepare and pre-process the dataset
x_train, y_train = load_iris(return_X_y=True)
x_train = x_train[:, [0, 2]]
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150)
# Hyperparameters
hparams = dict(num_prototypes=30, lr=0.03)
# Initialize the model
model = pt.models.NeuralGas(
hparams,
prototype_initializer=pt.components.Zeros(2),
lr_scheduler=ExponentialLR,
lr_scheduler_kwargs=dict(gamma=0.99, verbose=False),
)
# Compute intermediate input and output sizes
model.example_input_array = torch.zeros(4, 2)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisNG2D(data=train_ds)
# Setup trainer
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[vis],
weights_summary="full",
)
# Training loop
trainer.fit(model, train_loader)