prototorch_models/examples/siamese_glvq_iris.py
2021-05-07 15:25:04 +02:00

65 lines
1.8 KiB
Python

"""Siamese GLVQ example using all four dimensions of the Iris dataset."""
import prototorch as pt
import pytorch_lightning as pl
import torch
class Backbone(torch.nn.Module):
"""Two fully connected layers with ReLU activation."""
def __init__(self, input_size=4, hidden_size=10, latent_size=2):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.latent_size = latent_size
self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.dense1(x))
out = self.relu(self.dense2(x))
return out
if __name__ == "__main__":
# Dataset
from sklearn.datasets import load_iris
x_train, y_train = load_iris(return_X_y=True)
train_ds = pt.datasets.NumpyDataset(x_train, y_train)
# Reproducibility
pl.utilities.seed.seed_everything(seed=2)
# Dataloaders
train_loader = torch.utils.data.DataLoader(train_ds,
num_workers=0,
batch_size=150)
# Hyperparameters
hparams = dict(
nclasses=3,
prototypes_per_class=2,
prototype_initializer=pt.components.SMI((x_train, y_train)),
proto_lr=0.001,
bb_lr=0.001,
)
# Initialize the model
model = pt.models.SiameseGLVQ(
hparams,
backbone_module=Backbone,
)
# Model summary
print(model)
# Callbacks
vis = pt.models.VisSiameseGLVQ2D(data=(x_train, y_train), border=0.1)
# Setup trainer
trainer = pl.Trainer(max_epochs=100, callbacks=[vis])
# Training loop
trainer.fit(model, train_loader)