prototorch_models/prototorch/models/abstract.py
2021-06-30 16:03:45 +02:00

193 lines
6.2 KiB
Python

"""Abstract classes to be inherited by prototorch models."""
from typing import Final, final
import pytorch_lightning as pl
import torch
import torchmetrics
from ..core.competitions import WTAC
from ..core.components import Components, LabeledComponents
from ..core.distances import euclidean_distance
from ..core.initializers import LabelsInitializer
from ..core.pooling import stratified_min_pooling
from ..nn.wrappers import LambdaLayer
class ProtoTorchMixin(object):
pass
class ProtoTorchBolt(pl.LightningModule):
"""All ProtoTorch models are ProtoTorch Bolts."""
def __repr__(self):
surep = super().__repr__()
indented = "".join([f"\t{line}\n" for line in surep.splitlines()])
wrapped = f"ProtoTorch Bolt(\n{indented})"
return wrapped
class PrototypeModel(ProtoTorchBolt):
def __init__(self, hparams, **kwargs):
super().__init__()
# Hyperparameters
self.save_hyperparameters(hparams)
# Default hparams
self.hparams.setdefault("lr", 0.01)
# Default config
self.optimizer = kwargs.get("optimizer", torch.optim.Adam)
self.lr_scheduler = kwargs.get("lr_scheduler", None)
self.lr_scheduler_kwargs = kwargs.get("lr_scheduler_kwargs", dict())
distance_fn = kwargs.get("distance_fn", euclidean_distance)
self.distance_layer = LambdaLayer(distance_fn)
@property
def num_prototypes(self):
return len(self.proto_layer.components)
@property
def prototypes(self):
return self.proto_layer.components.detach().cpu()
@property
def components(self):
"""Only an alias for the prototypes."""
return self.prototypes
def configure_optimizers(self):
optimizer = self.optimizer(self.parameters(), lr=self.hparams.lr)
if self.lr_scheduler is not None:
scheduler = self.lr_scheduler(optimizer,
**self.lr_scheduler_kwargs)
sch = {
"scheduler": scheduler,
"interval": "step",
} # called after each training step
return [optimizer], [sch]
else:
return optimizer
@final
def reconfigure_optimizers(self):
self.trainer.accelerator.setup_optimizers(self.trainer)
def add_prototypes(self, *args, **kwargs):
self.proto_layer.add_components(*args, **kwargs)
self.reconfigure_optimizers()
def remove_prototypes(self, indices):
self.proto_layer.remove_components(indices)
self.reconfigure_optimizers()
class UnsupervisedPrototypeModel(PrototypeModel):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
# Layers
prototypes_initializer = kwargs.get("prototypes_initializer", None)
if prototypes_initializer is not None:
self.proto_layer = Components(
self.hparams.num_prototypes,
initializer=prototypes_initializer,
)
def compute_distances(self, x):
protos = self.proto_layer()
distances = self.distance_layer(x, protos)
return distances
def forward(self, x):
distances = self.compute_distances(x)
return distances
class SupervisedPrototypeModel(PrototypeModel):
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
# Layers
prototypes_initializer = kwargs.get("prototypes_initializer", None)
labels_initializer = kwargs.get("labels_initializer",
LabelsInitializer())
if prototypes_initializer is not None:
self.proto_layer = LabeledComponents(
distribution=self.hparams.distribution,
components_initializer=prototypes_initializer,
labels_initializer=labels_initializer,
)
self.competition_layer = WTAC()
@property
def prototype_labels(self):
return self.proto_layer.labels.detach().cpu()
@property
def num_classes(self):
return self.proto_layer.num_classes
def compute_distances(self, x):
protos, _ = self.proto_layer()
distances = self.distance_layer(x, protos)
return distances
def forward(self, x):
distances = self.compute_distances(x)
plabels = self.proto_layer.labels
winning = stratified_min_pooling(distances, plabels)
y_pred = torch.nn.functional.softmin(winning)
return y_pred
def predict_from_distances(self, distances):
with torch.no_grad():
plabels = self.proto_layer.labels
y_pred = self.competition_layer(distances, plabels)
return y_pred
def predict(self, x):
with torch.no_grad():
distances = self.compute_distances(x)
y_pred = self.predict_from_distances(distances)
return y_pred
def log_acc(self, distances, targets, tag):
preds = self.predict_from_distances(distances)
accuracy = torchmetrics.functional.accuracy(preds.int(), targets.int())
# `.int()` because FloatTensors are assumed to be class probabilities
self.log(tag,
accuracy,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True)
class NonGradientMixin(ProtoTorchMixin):
"""Mixin for custom non-gradient optimization."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.automatic_optimization: Final = False
def training_step(self, train_batch, batch_idx, optimizer_idx=None):
raise NotImplementedError
class ImagePrototypesMixin(ProtoTorchMixin):
"""Mixin for models with image prototypes."""
@final
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
"""Constrain the components to the range [0, 1] by clamping after updates."""
self.proto_layer.components.data.clamp_(0.0, 1.0)
def get_prototype_grid(self, num_columns=2, return_channels_last=True):
from torchvision.utils import make_grid
grid = make_grid(self.components, nrow=num_columns)
if return_channels_last:
grid = grid.permute((1, 2, 0))
return grid.cpu()