55 lines
1.2 KiB
Python
55 lines
1.2 KiB
Python
"""LVQMLN example using all four dimensions of the Iris dataset."""
|
|
|
|
import prototorch as pt
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
|
|
from siamese_glvq_iris import Backbone
|
|
|
|
if __name__ == "__main__":
|
|
# Dataset
|
|
train_ds = pt.datasets.Iris()
|
|
|
|
# Reproducibility
|
|
pl.utilities.seed.seed_everything(seed=42)
|
|
|
|
# Dataloaders
|
|
train_loader = torch.utils.data.DataLoader(train_ds,
|
|
num_workers=0,
|
|
batch_size=150)
|
|
|
|
# Hyperparameters
|
|
hparams = dict(
|
|
distribution=[1, 2, 2],
|
|
proto_lr=0.001,
|
|
bb_lr=0.001,
|
|
)
|
|
|
|
# Initialize the backbone
|
|
backbone = Backbone()
|
|
|
|
# Initialize the model
|
|
model = pt.models.LVQMLN(
|
|
hparams,
|
|
prototype_initializer=pt.components.SSI(train_ds, transform=backbone),
|
|
backbone=backbone,
|
|
)
|
|
|
|
# Model summary
|
|
print(model)
|
|
|
|
# Callbacks
|
|
vis = pt.models.VisSiameseGLVQ2D(
|
|
data=train_ds,
|
|
map_protos=False,
|
|
border=0.1,
|
|
resolution=500,
|
|
axis_off=True,
|
|
)
|
|
|
|
# Setup trainer
|
|
trainer = pl.Trainer(max_epochs=100, callbacks=[vis], gpus=0)
|
|
|
|
# Training loop
|
|
trainer.fit(model, train_loader)
|