147 lines
4.7 KiB
Python
147 lines
4.7 KiB
Python
"""Unsupervised prototype learning algorithms."""
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ..core.competitions import wtac
|
|
from ..core.distances import squared_euclidean_distance
|
|
from ..core.losses import NeuralGasEnergy
|
|
from ..nn.wrappers import LambdaLayer
|
|
from .abstract import NonGradientMixin, UnsupervisedPrototypeModel
|
|
from .callbacks import GNGCallback
|
|
from .extras import ConnectionTopology
|
|
|
|
|
|
class KohonenSOM(NonGradientMixin, UnsupervisedPrototypeModel):
|
|
"""Kohonen Self-Organizing-Map.
|
|
|
|
TODO Allow non-2D grids
|
|
|
|
"""
|
|
def __init__(self, hparams, **kwargs):
|
|
h, w = hparams.get("shape")
|
|
# Ignore `num_prototypes`
|
|
hparams["num_prototypes"] = h * w
|
|
distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance)
|
|
super().__init__(hparams, distance_fn=distance_fn, **kwargs)
|
|
|
|
# Hyperparameters
|
|
self.save_hyperparameters(hparams)
|
|
|
|
# Default hparams
|
|
self.hparams.setdefault("alpha", 0.3)
|
|
self.hparams.setdefault("sigma", max(h, w) / 2.0)
|
|
|
|
# Additional parameters
|
|
x, y = torch.arange(h), torch.arange(w)
|
|
grid = torch.stack(torch.meshgrid(x, y), dim=-1)
|
|
self.register_buffer("_grid", grid)
|
|
self._sigma = self.hparams.sigma
|
|
self._lr = self.hparams.lr
|
|
|
|
def predict_from_distances(self, distances):
|
|
grid = self._grid.view(-1, 2)
|
|
wp = wtac(distances, grid)
|
|
return wp
|
|
|
|
def training_step(self, train_batch, batch_idx):
|
|
# x = train_batch
|
|
# TODO Check if the batch has labels
|
|
x = train_batch[0]
|
|
d = self.compute_distances(x)
|
|
wp = self.predict_from_distances(d)
|
|
grid = self._grid.view(-1, 2)
|
|
gd = squared_euclidean_distance(wp, grid)
|
|
nh = torch.exp(-gd / self._sigma**2)
|
|
protos = self.proto_layer()
|
|
diff = x.unsqueeze(dim=1) - protos
|
|
delta = self._lr * self.hparams.alpha * nh.unsqueeze(-1) * diff
|
|
updated_protos = protos + delta.sum(dim=0)
|
|
self.proto_layer.load_state_dict({"_components": updated_protos},
|
|
strict=False)
|
|
|
|
def training_epoch_end(self, training_step_outputs):
|
|
self._sigma = self.hparams.sigma * np.exp(
|
|
-self.current_epoch / self.trainer.max_epochs)
|
|
|
|
def extra_repr(self):
|
|
return f"(grid): (shape: {tuple(self._grid.shape)})"
|
|
|
|
|
|
class HeskesSOM(UnsupervisedPrototypeModel):
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__(hparams, **kwargs)
|
|
|
|
def training_step(self, train_batch, batch_idx):
|
|
# TODO Implement me!
|
|
raise NotImplementedError()
|
|
|
|
|
|
class NeuralGas(UnsupervisedPrototypeModel):
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__(hparams, **kwargs)
|
|
|
|
# Hyperparameters
|
|
self.save_hyperparameters(hparams)
|
|
|
|
# Default hparams
|
|
self.hparams.setdefault("agelimit", 10)
|
|
self.hparams.setdefault("lm", 1)
|
|
|
|
self.energy_layer = NeuralGasEnergy(lm=self.hparams.lm)
|
|
self.topology_layer = ConnectionTopology(
|
|
agelimit=self.hparams.agelimit,
|
|
num_prototypes=self.hparams.num_prototypes,
|
|
)
|
|
|
|
def training_step(self, train_batch, batch_idx):
|
|
# x = train_batch
|
|
# TODO Check if the batch has labels
|
|
x = train_batch[0]
|
|
d = self.compute_distances(x)
|
|
loss, _ = self.energy_layer(d)
|
|
self.topology_layer(d)
|
|
self.log("loss", loss)
|
|
return loss
|
|
|
|
# def training_epoch_end(self, training_step_outputs):
|
|
# print(f"{self.trainer.lr_schedulers}")
|
|
# print(f"{self.trainer.lr_schedulers[0]['scheduler'].optimizer}")
|
|
|
|
|
|
class GrowingNeuralGas(NeuralGas):
|
|
def __init__(self, hparams, **kwargs):
|
|
super().__init__(hparams, **kwargs)
|
|
|
|
# Defaults
|
|
self.hparams.setdefault("step_reduction", 0.5)
|
|
self.hparams.setdefault("insert_reduction", 0.1)
|
|
self.hparams.setdefault("insert_freq", 10)
|
|
|
|
errors = torch.zeros(self.hparams.num_prototypes, device=self.device)
|
|
self.register_buffer("errors", errors)
|
|
|
|
def training_step(self, train_batch, _batch_idx):
|
|
# x = train_batch
|
|
# TODO Check if the batch has labels
|
|
x = train_batch[0]
|
|
d = self.compute_distances(x)
|
|
loss, order = self.energy_layer(d)
|
|
winner = order[:, 0]
|
|
mask = torch.zeros_like(d)
|
|
mask[torch.arange(len(mask)), winner] = 1.0
|
|
dp = d * mask
|
|
|
|
self.errors += torch.sum(dp * dp)
|
|
self.errors *= self.hparams.step_reduction
|
|
|
|
self.topology_layer(d)
|
|
self.log("loss", loss)
|
|
return loss
|
|
|
|
def configure_callbacks(self):
|
|
return [
|
|
GNGCallback(reduction=self.hparams.insert_reduction,
|
|
freq=self.hparams.insert_freq)
|
|
]
|