"""Siamese GLVQ example using all four dimensions of the Iris dataset.""" import argparse import pytorch_lightning as pl import torch import prototorch as pt class Backbone(torch.nn.Module): def __init__(self, input_size=4, hidden_size=10, latent_size=2): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.latent_size = latent_size self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size) self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size) self.activation = torch.nn.Sigmoid() def forward(self, x): x = self.activation(self.dense1(x)) out = self.activation(self.dense2(x)) return out if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris() # Reproducibility pl.utilities.seed.seed_everything(seed=2) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) # Hyperparameters hparams = dict( distribution=[1, 2, 3], proto_lr=0.01, bb_lr=0.01, ) # Initialize the backbone backbone = Backbone() # Initialize the model model = pt.models.SiameseGLVQ( hparams, prototype_initializer=pt.components.SMI(train_ds), backbone=backbone, both_path_gradients=False, ) # Model summary print(model) # Callbacks vis = pt.models.VisSiameseGLVQ2D(data=train_ds, border=0.1) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], ) # Training loop trainer.fit(model, train_loader)