import argparse import prototorch as pt import pytorch_lightning as pl from prototorch.components.initializers import SelectionInitializer from prototorch.datasets import Iris from prototorch.models.unsupervised import GrowingNeuralGas from torch.utils.data import DataLoader if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Prepare the data train_ds = Iris(dims=[0, 2]) train_loader = DataLoader(train_ds, batch_size=32) # Hyperparameters hparams = dict(num_prototypes=2, lr=0.1, prototype_initializer=SelectionInitializer(train_ds.data)) # Initialize the model model = GrowingNeuralGas(hparams) # Model summary print(model) # Callbacks vis = pt.models.VisNG2D(data=train_loader) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, max_epochs=100, callbacks=[vis], ) # Training loop trainer.fit(model, train_loader) # Model summary print(model)