"""GLVQ example using the Iris dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from torch.optim.lr_scheduler import ExponentialLR if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris() # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) # Hyperparameters hparams = dict( input_dim=4, latent_dim=3, distribution={ "num_classes": 3, "prototypes_per_class": 2 }, proto_lr=0.0005, bb_lr=0.0005, ) # Initialize the model model = pt.models.GMLVQ( hparams, optimizer=torch.optim.Adam, prototype_initializer=pt.components.SSI(train_ds), lr_scheduler=ExponentialLR, lr_scheduler_kwargs=dict(gamma=0.99, verbose=False), omega_initializer=pt.components.PCA(train_ds.data) ) # Compute intermediate input and output sizes #model.example_input_array = torch.zeros(4, 2) # Callbacks vis = pt.models.VisGMLVQ2D(data=train_ds, border=0.1) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], weights_summary="full", accelerator="ddp", ) # Training loop trainer.fit(model, train_loader)