"""Localized-GTLVQ example using the Moons dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Reproducibility pl.utilities.seed.seed_everything(seed=2) # Dataset train_ds = pt.datasets.Moons(num_samples=300, noise=0.2, seed=42) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=256, shuffle=True) # Hyperparameters # Latent_dim should be lower than input dim. hparams = dict(distribution=[1, 3], input_dim=2, latent_dim=1) # Initialize the model model = pt.models.GTLVQ( hparams, prototypes_initializer=pt.initializers.SMCI(train_ds)) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Summary print(model) # Callbacks vis = pt.models.VisGLVQ2D(data=train_ds) es = pl.callbacks.EarlyStopping( monitor="train_acc", min_delta=0.001, patience=20, mode="max", verbose=False, check_on_train_epoch_end=True, ) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, es, ], weights_summary="full", accelerator="ddp", ) # Training loop trainer.fit(model, train_loader)