"""GLVQ example using the Iris dataset.""" import pytorch_lightning as pl import torch from prototorch.components import initializers as cinit from prototorch.datasets.abstract import NumpyDataset from prototorch.models.callbacks.visualization import VisGLVQ2D from prototorch.models.glvq import GLVQ from sklearn.datasets import load_iris from torch.utils.data import DataLoader if __name__ == "__main__": # Dataset x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] train_ds = NumpyDataset(x_train, y_train) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) # Hyperparameters hparams = dict( nclasses=3, prototypes_per_class=2, prototype_initializer=cinit.StratifiedMeanInitializer( torch.Tensor(x_train), torch.Tensor(y_train)), lr=0.01, ) # Initialize the model model = GLVQ(hparams) # Setup trainer trainer = pl.Trainer( max_epochs=50, callbacks=[VisGLVQ2D(x_train, y_train)], ) # Training loop trainer.fit(model, train_loader)