"""CBC example using the Iris dataset.""" import numpy as np import pytorch_lightning as pl import torch from matplotlib import pyplot as plt from sklearn.datasets import load_iris from torch.utils.data import DataLoader from prototorch.datasets.abstract import NumpyDataset from prototorch.models.cbc import CBC class VisualizationCallback(pl.Callback): def __init__(self, x_train, y_train, title="Prototype Visualization", cmap="viridis"): super().__init__() self.x_train = x_train self.y_train = y_train self.title = title self.fig = plt.figure(self.title) self.cmap = cmap def on_epoch_end(self, trainer, pl_module): # protos = pl_module.prototypes protos = pl_module.components # plabels = pl_module.prototype_labels ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], # c=plabels, c="k", cmap=self.cmap, edgecolor="k", marker="D", s=50, ) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) plt.pause(0.1) if __name__ == "__main__": # Dataset x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] train_ds = NumpyDataset(x_train, y_train) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) # Hyperparameters hparams = dict( input_dim=x_train.shape[1], nclasses=3, prototypes_per_class=3, prototype_initializer="stratified_mean", lr=0.01, ) # Initialize the model model = CBC(hparams, data=[x_train, y_train]) # Fix the component locations # model.proto_layer.requires_grad_(False) # Pure-positive reasonings ncomps = 3 nclasses = 3 rmat = torch.stack( [0.9 * torch.eye(ncomps), torch.zeros(ncomps, nclasses)], dim=0) # model.reasoning_layer.load_state_dict({"reasoning_probabilities": rmat}, # strict=True) print(model.reasoning_layer.reasoning_probabilities) # import sys # sys.exit() # Model summary print(model) # Callbacks vis = VisualizationCallback(x_train, y_train) # Setup trainer trainer = pl.Trainer( max_epochs=100, callbacks=[ vis, ], ) # Training loop trainer.fit(model, train_loader)