"""ProtoTorch KNN model.""" import warnings from prototorch.core.competitions import KNNC from prototorch.core.components import LabeledComponents from prototorch.core.initializers import LiteralCompInitializer, LiteralLabelsInitializer from prototorch.utils.utils import parse_data_arg from .abstract import SupervisedPrototypeModel class KNN(SupervisedPrototypeModel): """K-Nearest-Neighbors classification algorithm.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) # Default hparams self.hparams.setdefault("k", 1) data = kwargs.get("data", None) if data is None: raise ValueError("KNN requires data, but was not provided!") data, targets = parse_data_arg(data) # Layers self.proto_layer = LabeledComponents( distribution=[], components_initializer=LiteralCompInitializer(data), labels_initializer=LiteralLabelsInitializer(targets)) self.competition_layer = KNNC(k=self.hparams.k) def training_step(self, train_batch, batch_idx, optimizer_idx=None): return 1 # skip training step def on_train_batch_start(self, train_batch, batch_idx, dataloader_idx=None): warnings.warn("k-NN has no training, skipping!") return -1 def configure_optimizers(self): return None