"""Models based on the GLVQ framework.""" import torch import torchmetrics from prototorch.components import LabeledComponents from prototorch.functions.activations import get_activation from prototorch.functions.competitions import wtac from prototorch.functions.distances import (euclidean_distance, omega_distance, sed) from prototorch.functions.helper import get_flat from prototorch.functions.losses import (glvq_loss, lvq1_loss, lvq21_loss) from .abstract import AbstractPrototypeModel, PrototypeImageModel class GLVQ(AbstractPrototypeModel): """Generalized Learning Vector Quantization.""" def __init__(self, hparams, **kwargs): super().__init__() self.save_hyperparameters(hparams) self.distance_fn = kwargs.get("distance_fn", euclidean_distance) self.optimizer = kwargs.get("optimizer", torch.optim.Adam) # Default Values self.hparams.setdefault("transfer_fn", "identity") self.hparams.setdefault("transfer_beta", 10.0) self.hparams.setdefault("lr", 0.01) self.proto_layer = LabeledComponents( distribution=self.hparams.distribution, initializer=self.prototype_initializer(**kwargs)) self.transfer_fn = get_activation(self.hparams.transfer_fn) self.acc_metric = torchmetrics.Accuracy() self.loss = glvq_loss def prototype_initializer(self, **kwargs): return kwargs.get("prototype_initializer", None) @property def prototype_labels(self): return self.proto_layer.component_labels.detach().cpu() @property def num_classes(self): return len(self.proto_layer.distribution) def _forward(self, x): protos, _ = self.proto_layer() distances = self.distance_fn(x, protos) return distances def forward(self, x): distances = self._forward(x) y_pred = self.predict_from_distances(distances) y_pred = torch.eye(self.num_classes, device=self.device)[y_pred.int()] return y_pred def predict_from_distances(self, distances): with torch.no_grad(): plabels = self.proto_layer.component_labels y_pred = wtac(distances, plabels) return y_pred def predict(self, x): with torch.no_grad(): distances = self._forward(x) y_pred = self.predict_from_distances(distances) return y_pred def log_acc(self, distances, targets, tag): preds = self.predict_from_distances(distances) self.acc_metric(preds.int(), targets.int()) # `.int()` because FloatTensors are assumed to be class probabilities self.log(tag, self.acc_metric, on_step=False, on_epoch=True, prog_bar=True, logger=True) def shared_step(self, batch, batch_idx, optimizer_idx=None): x, y = batch out = self._forward(x) plabels = self.proto_layer.component_labels mu = self.loss(out, y, prototype_labels=plabels) batch_loss = self.transfer_fn(mu, beta=self.hparams.transfer_beta) loss = batch_loss.sum(dim=0) return out, loss def training_step(self, batch, batch_idx, optimizer_idx=None): out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx) self.log("train_loss", train_loss) self.log_acc(out, batch[-1], tag="train_acc") return train_loss def validation_step(self, batch, batch_idx): # `model.eval()` and `torch.no_grad()` handled by pl out, val_loss = self.shared_step(batch, batch_idx) self.log("val_loss", val_loss) self.log_acc(out, batch[-1], tag="val_acc") return val_loss def test_step(self, batch, batch_idx): # `model.eval()` and `torch.no_grad()` handled by pl out, test_loss = self.shared_step(batch, batch_idx) self.log_acc(out, batch[-1], tag="test_acc") return test_loss def test_epoch_end(self, outputs): test_loss = 0.0 for batch_loss in outputs: test_loss += batch_loss.item() self.log("test_loss", test_loss) # def predict_step(self, batch, batch_idx, dataloader_idx=None): # pass def __repr__(self): super_repr = super().__repr__() return f"{super_repr}" class SiameseGLVQ(GLVQ): """GLVQ in a Siamese setting. GLVQ model that applies an arbitrary transformation on the inputs and the prototypes before computing the distances between them. The weights in the transformation pipeline are only learned from the inputs. """ def __init__(self, hparams, backbone=torch.nn.Identity(), both_path_gradients=False, **kwargs): super().__init__(hparams, **kwargs) self.backbone = backbone self.both_path_gradients = both_path_gradients self.distance_fn = kwargs.get("distance_fn", sed) def configure_optimizers(self): proto_opt = self.optimizer(self.proto_layer.parameters(), lr=self.hparams.proto_lr) if list(self.backbone.parameters()): # only add an optimizer is the backbone has trainable parameters # otherwise, the next line fails bb_opt = self.optimizer(self.backbone.parameters(), lr=self.hparams.bb_lr) return proto_opt, bb_opt else: return proto_opt def _forward(self, x): protos, _ = self.proto_layer() latent_x = self.backbone(x) self.backbone.requires_grad_(self.both_path_gradients) latent_protos = self.backbone(protos) self.backbone.requires_grad_(True) distances = self.distance_fn(latent_x, latent_protos) return distances def predict_latent(self, x, map_protos=True): """Predict `x` assuming it is already embedded in the latent space. Only the prototypes are embedded in the latent space using the backbone. """ self.eval() with torch.no_grad(): protos, plabels = self.proto_layer() if map_protos: protos = self.backbone(protos) d = self.distance_fn(x, protos) y_pred = wtac(d, plabels) return y_pred class GRLVQ(SiameseGLVQ): """Generalized Relevance Learning Vector Quantization.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.relevances = torch.nn.parameter.Parameter( torch.ones(self.hparams.input_dim)) # Overwrite backbone self.backbone = self._backbone @property def relevance_profile(self): return self.relevances.detach().cpu() def _backbone(self, x): """Namespace hook for the visualization callbacks to work.""" return x @ torch.diag(self.relevances) def _forward(self, x): protos, _ = self.proto_layer() distances = omega_distance(x, protos, torch.diag(self.relevances)) return distances class GMLVQ(SiameseGLVQ): """Generalized Matrix Learning Vector Quantization.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.backbone = torch.nn.Linear(self.hparams.input_dim, self.hparams.latent_dim, bias=False) @property def omega_matrix(self): return self.backbone.weight.detach().cpu() @property def lambda_matrix(self): omega = self.backbone.weight # (latent_dim, input_dim) lam = omega.T @ omega return lam.detach().cpu() def show_lambda(self): import matplotlib.pyplot as plt title = "Lambda matrix" plt.figure(title) plt.title(title) plt.imshow(self.lambda_matrix, cmap="gray") plt.axis("off") plt.colorbar() plt.show(block=True) def _forward(self, x): protos, _ = self.proto_layer() x, protos = get_flat(x, protos) latent_x = self.backbone(x) self.backbone.requires_grad_(self.both_path_gradients) latent_protos = self.backbone(protos) self.backbone.requires_grad_(True) distances = self.distance_fn(latent_x, latent_protos) return distances class LVQMLN(SiameseGLVQ): """Learning Vector Quantization Multi-Layer Network. GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT on the prototypes before computing the distances between them. This of course, means that the prototypes no longer live the input space, but rather in the embedding space. """ def _forward(self, x): latent_protos, _ = self.proto_layer() latent_x = self.backbone(x) distances = self.distance_fn(latent_x, latent_protos) return distances class GLVQ1(GLVQ): """Generalized Learning Vector Quantization 1.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.loss = lvq1_loss self.optimizer = torch.optim.SGD class GLVQ21(GLVQ): """Generalized Learning Vector Quantization 2.1.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.loss = lvq21_loss self.optimizer = torch.optim.SGD class ImageGLVQ(PrototypeImageModel, GLVQ): """GLVQ for training on image data. GLVQ model that constrains the prototypes to the range [0, 1] by clamping after updates. """ class ImageGMLVQ(PrototypeImageModel, GMLVQ): """GMLVQ for training on image data. GMLVQ model that constrains the prototypes to the range [0, 1] by clamping after updates. """