"""RSLVQ example using the Iris dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from torchvision.transforms import Lambda if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Reproducibility pl.utilities.seed.seed_everything(seed=42) # Dataset train_ds = pt.datasets.Iris(dims=[0, 2]) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=64) # Hyperparameters hparams = dict( distribution=[2, 2, 3], proto_lr=0.05, lambd=0.1, input_dim=2, latent_dim=2, bb_lr=0.01, ) # Initialize the model model = pt.models.probabilistic.PLVQ( hparams, optimizer=torch.optim.Adam, # prototype_initializer=pt.components.SMI(train_ds), prototype_initializer=pt.components.SSI(train_ds, noise=0.2), # prototype_initializer=pt.components.Zeros(2), # prototype_initializer=pt.components.Ones(2, scale=2.0), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Summary print(model) # Callbacks vis = pt.models.VisSiameseGLVQ2D(data=train_ds) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], terminate_on_nan=True, weights_summary="full", accelerator="ddp", ) # Training loop trainer.fit(model, train_loader)