"""CBC example using the Iris dataset.""" import numpy as np import pytorch_lightning as pl import torch from matplotlib import pyplot as plt from sklearn.datasets import make_circles from torch.utils.data import DataLoader from prototorch.datasets.abstract import NumpyDataset from prototorch.models.callbacks.visualization import VisPointProtos from prototorch.models.cbc import CBC, euclidean_similarity from prototorch.models.glvq import GLVQ class VisualizationCallback(pl.Callback): def __init__( self, x_train, y_train, prototype_model=True, title="Prototype Visualization", cmap="viridis", ): super().__init__() self.x_train = x_train self.y_train = y_train self.title = title self.fig = plt.figure(self.title) self.cmap = cmap self.prototype_model = prototype_model def on_epoch_end(self, trainer, pl_module): if self.prototype_model: protos = pl_module.prototypes color = pl_module.prototype_labels else: protos = pl_module.components color = "k" ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c=color, cmap=self.cmap, edgecolor="k", marker="D", s=50, ) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) plt.pause(0.1) if __name__ == "__main__": # Dataset x_train, y_train = make_circles(n_samples=300, shuffle=True, noise=0.05, random_state=None, factor=0.5) train_ds = NumpyDataset(x_train, y_train) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) # Hyperparameters hparams = dict( input_dim=x_train.shape[1], nclasses=len(np.unique(y_train)), prototypes_per_class=5, prototype_initializer="randn", lr=0.01, ) # Initialize the model model = CBC( hparams, data=[x_train, y_train], similarity=euclidean_similarity, ) model = GLVQ(hparams, data=[x_train, y_train]) # Fix the component locations # model.proto_layer.requires_grad_(False) # import sys # sys.exit() # Model summary print(model) # Callbacks dvis = VisPointProtos( data=(x_train, y_train), save=True, snap=False, voronoi=True, resolution=50, pause_time=0.1, make_gif=True, ) # Setup trainer trainer = pl.Trainer( max_epochs=10, callbacks=[ dvis, ], ) # Training loop trainer.fit(model, train_loader)