"""Neural Gas example using the Iris dataset.""" import argparse import pytorch_lightning as pl import torch from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from torch.optim.lr_scheduler import ExponentialLR import prototorch as pt if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Prepare and pre-process the dataset x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] scaler = StandardScaler() scaler.fit(x_train) x_train = scaler.transform(x_train) train_ds = pt.datasets.NumpyDataset(x_train, y_train) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) # Hyperparameters hparams = dict( num_prototypes=30, input_dim=2, lr=0.03, ) # Initialize the model model = pt.models.NeuralGas( hparams, prototype_initializer=pt.components.Zeros(2), lr_scheduler=ExponentialLR, lr_scheduler_kwargs=dict(gamma=0.99, verbose=False), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Model summary print(model) # Callbacks vis = pt.models.VisNG2D(data=train_ds) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], weights_summary="full", ) # Training loop trainer.fit(model, train_loader)