"""Probabilistic GLVQ methods""" import torch from ..core.losses import nllr_loss, rslvq_loss from ..core.pooling import stratified_min_pooling, stratified_sum_pooling from ..nn.wrappers import LambdaLayer, LossLayer from .extras import GaussianPrior, RankScaledGaussianPrior from .glvq import GLVQ, SiameseGMLVQ class CELVQ(GLVQ): """Cross-Entropy Learning Vector Quantization.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) # Loss self.loss = torch.nn.CrossEntropyLoss() def shared_step(self, batch, batch_idx, optimizer_idx=None): x, y = batch out = self.compute_distances(x) # [None, num_protos] plabels = self.proto_layer.labels winning = stratified_min_pooling(out, plabels) # [None, num_classes] probs = -1.0 * winning batch_loss = self.loss(probs, y.long()) loss = batch_loss.sum() return out, loss class ProbabilisticLVQ(GLVQ): def __init__(self, hparams, rejection_confidence=0.0, **kwargs): super().__init__(hparams, **kwargs) self.conditional_distribution = GaussianPrior(self.hparams.variance) self.rejection_confidence = rejection_confidence def forward(self, x): distances = self.compute_distances(x) conditional = self.conditional_distribution(distances) prior = (1. / self.num_prototypes) * torch.ones(self.num_prototypes, device=self.device) posterior = conditional * prior plabels = self.proto_layer._labels y_pred = stratified_sum_pooling(posterior, plabels) return y_pred def predict(self, x): y_pred = self.forward(x) confidence, prediction = torch.max(y_pred, dim=1) prediction[confidence < self.rejection_confidence] = -1 return prediction def training_step(self, batch, batch_idx, optimizer_idx=None): x, y = batch out = self.forward(x) plabels = self.proto_layer.labels batch_loss = self.loss(out, y, plabels) train_loss = batch_loss.sum() self.log("train_loss", train_loss) return train_loss class SLVQ(ProbabilisticLVQ): """Soft Learning Vector Quantization.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.loss = LossLayer(nllr_loss) class RSLVQ(ProbabilisticLVQ): """Robust Soft Learning Vector Quantization.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.loss = LossLayer(rslvq_loss) class PLVQ(ProbabilisticLVQ, SiameseGMLVQ): """Probabilistic Learning Vector Quantization. TODO: Use Backbone LVQ instead """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.conditional_distribution = RankScaledGaussianPrior( self.hparams.lambd) self.loss = torch.nn.KLDivLoss() # FIXME # def training_step(self, batch, batch_idx, optimizer_idx=None): # x, y = batch # y_pred = self(x) # batch_loss = self.loss(y_pred, y) # loss = batch_loss.sum() # return loss