import os import numpy as np import pytorch_lightning as pl import torch from matplotlib import pyplot as plt from matplotlib.offsetbox import AnchoredText from prototorch.utils.celluloid import Camera from prototorch.utils.colors import color_scheme from prototorch.utils.utils import (gif_from_dir, make_directory, prettify_string) class VisWeights(pl.Callback): """Abstract weight visualization callback.""" def __init__( self, data=None, ignore_last_output_row=False, label_map=None, project_mesh=False, project_protos=False, voronoi=False, axis_off=True, cmap="viridis", show=True, display_logs=True, display_logs_settings={}, pause_time=0.5, border=1, resolution=10, interval=False, save=False, snap=True, save_dir="./img", make_gif=False, make_mp4=False, verbose=True, dpi=500, fps=5, figsize=(11, 8.5), # standard paper in inches prefix="", distance_layer_index=-1, **kwargs, ): super().__init__(**kwargs) self.data = data self.ignore_last_output_row = ignore_last_output_row self.label_map = label_map self.voronoi = voronoi self.axis_off = True self.project_mesh = project_mesh self.project_protos = project_protos self.cmap = cmap self.show = show self.display_logs = display_logs self.display_logs_settings = display_logs_settings self.pause_time = pause_time self.border = border self.resolution = resolution self.interval = interval self.save = save self.snap = snap self.save_dir = save_dir self.make_gif = make_gif self.make_mp4 = make_mp4 self.verbose = verbose self.dpi = dpi self.fps = fps self.figsize = figsize self.prefix = prefix self.distance_layer_index = distance_layer_index self.title = "Weights Visualization" make_directory(self.save_dir) def _skip_epoch(self, epoch): if self.interval: if epoch % self.interval != 0: return True return False def _clean_and_setup_ax(self): ax = self.ax if not self.snap: ax.cla() ax.set_title(self.title) if self.axis_off: ax.axis("off") def _savefig(self, fignum, orientation="horizontal"): figname = f"{self.save_dir}/{self.prefix}{fignum:05d}.png" figsize = self.figsize if orientation == "vertical": figsize = figsize[::-1] elif orientation == "horizontal": pass else: pass self.fig.set_size_inches(figsize, forward=False) self.fig.savefig(figname, dpi=self.dpi) def _show_and_save(self, epoch): if self.show: plt.pause(self.pause_time) if self.save: self._savefig(epoch) if self.snap: self.camera.snap() def _display_logs(self, ax, epoch, logs): if self.display_logs: settings = dict( loc="lower right", # padding between the text and bounding box pad=0.5, # padding between the bounding box and the axes borderpad=1.0, # https://matplotlib.org/api/text_api.html#matplotlib.text.Text prop=dict( fontfamily="monospace", fontweight="medium", fontsize=12, ), ) # Override settings with self.display_logs_settings. settings = {**settings, **self.display_logs_settings} log_string = f"""Epoch: {epoch:04d}, val_loss: {logs.get('val_loss', np.nan):.03f}, val_acc: {logs.get('val_acc', np.nan):.03f}, loss: {logs.get('loss', np.nan):.03f}, acc: {logs.get('acc', np.nan):.03f} """ log_string = prettify_string(log_string, end="") # https://matplotlib.org/api/offsetbox_api.html#matplotlib.offsetbox.AnchoredText anchored_text = AnchoredText(log_string, **settings) self.ax.add_artist(anchored_text) def on_train_start(self, trainer, pl_module, logs={}): self.fig = plt.figure(self.title) self.fig.set_size_inches(self.figsize, forward=False) self.ax = self.fig.add_subplot(111) self.camera = Camera(self.fig) def on_train_end(self, trainer, pl_module, logs={}): if self.make_gif: gif_from_dir(directory=self.save_dir, prefix=self.prefix, duration=1.0 / self.fps) if self.snap and self.make_mp4: animation = self.camera.animate() vid = os.path.join(self.save_dir, f"{self.prefix}animation.mp4") if self.verbose: print(f"Saving mp4 under {vid}.") animation.save(vid, fps=self.fps, dpi=self.dpi) class VisPointProtos(VisWeights): """Visualization of prototypes. .. TODO:: Still in Progress. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.title = "Point Prototypes Visualization" self.data_scatter_settings = { "marker": "o", "s": 30, "edgecolor": "k", "cmap": self.cmap, } self.protos_scatter_settings = { "marker": "D", "s": 50, "edgecolor": "k", "cmap": self.cmap, } def on_epoch_start(self, trainer, pl_module, logs={}): epoch = trainer.current_epoch if self._skip_epoch(epoch): return True self._clean_and_setup_ax() protos = pl_module.prototypes labels = pl_module.proto_layer.prototype_labels.detach().cpu().numpy() if self.project_protos: protos = self.model.projection(protos).numpy() color_map = color_scheme(n=len(set(labels)), cmap=self.cmap, zero_indexed=True) # TODO Get rid of the assumption y values in [0, num_of_classes] label_colors = [color_map[l] for l in labels] if self.data is not None: x, y = self.data # TODO Get rid of the assumption y values in [0, num_of_classes] y_colors = [color_map[l] for l in y] # x = self.model.projection(x) if not isinstance(x, np.ndarray): x = x.numpy() # Plot data points. self.ax.scatter(x[:, 0], x[:, 1], c=y_colors, **self.data_scatter_settings) # Paint decision regions. if self.voronoi: border = self.border resolution = self.resolution x = np.vstack((x, protos)) x_min, x_max = x[:, 0].min(), x[:, 0].max() y_min, y_max = x[:, 1].min(), x[:, 1].max() x_min, x_max = x_min - border, x_max + border y_min, y_max = y_min - border, y_max + border try: xx, yy = np.meshgrid( np.arange(x_min, x_max, (x_max - x_min) / resolution), np.arange(y_min, y_max, (x_max - x_min) / resolution), ) except ValueError as ve: print(ve) raise ValueError(f"x_min: {x_min}, x_max: {x_max}. " f"x_min - x_max is {x_max - x_min}.") except MemoryError as me: print(me) raise ValueError("Too many points. " "Try reducing the resolution.") mesh_input = np.c_[xx.ravel(), yy.ravel()] # Predict mesh labels. if self.project_mesh: mesh_input = self.model.projection(mesh_input) y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) # Plot voronoi regions. self.ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) self.ax.set_xlim(left=x_min + 0, right=x_max - 0) self.ax.set_ylim(bottom=y_min + 0, top=y_max - 0) # Plot prototypes. self.ax.scatter(protos[:, 0], protos[:, 1], c=label_colors, **self.protos_scatter_settings) # self._show_and_save(epoch) def on_epoch_end(self, trainer, pl_module, logs={}): epoch = trainer.current_epoch self._display_logs(self.ax, epoch, logs) self._show_and_save(epoch) class Vis2DAbstract(pl.Callback): def __init__(self, x_train, y_train, title="Prototype Visualization", cmap="viridis", border=1, tensorboard=False, show_last_only=False, block=False): super().__init__() self.x_train = x_train self.y_train = y_train self.title = title self.fig = plt.figure(self.title) self.cmap = cmap self.border = border self.tensorboard = tensorboard self.show_last_only = show_last_only self.block = block def add_to_tensorboard(self, trainer, pl_module): tb = pl_module.logger.experiment tb.add_figure(tag=f"{self.title}", figure=self.fig, global_step=trainer.current_epoch, close=False) class VisGLVQ2D(Vis2DAbstract): def on_epoch_end(self, trainer, pl_module): if self.show_last_only: if trainer.current_epoch != trainer.max_epochs - 1: return protos = pl_module.prototypes plabels = pl_module.prototype_labels x_train, y_train = self.x_train, self.y_train ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.axis("off") ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c=plabels, cmap=self.cmap, edgecolor="k", marker="D", s=50, ) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) if self.tensorboard: self.add_to_tensorboard(trainer, pl_module) if not self.block: plt.pause(0.01) else: plt.show(block=True) class VisSiameseGLVQ2D(Vis2DAbstract): def on_epoch_end(self, trainer, pl_module): protos = pl_module.prototypes plabels = pl_module.prototype_labels x_train, y_train = self.x_train, self.y_train x_train = pl_module.backbone(torch.Tensor(x_train)).detach() protos = pl_module.backbone(torch.Tensor(protos)).detach() ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.axis("off") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c=plabels, cmap=self.cmap, edgecolor="k", marker="D", s=50, ) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - self.border, x[:, 0].max() + self.border y_min, y_max = x[:, 1].min() - self.border, x[:, 1].max() + self.border xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict_latent(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) tb = pl_module.logger.experiment tb.add_figure( tag=f"{self.title}", figure=self.fig, global_step=trainer.current_epoch, close=False, ) if self.tensorboard: self.add_to_tensorboard(trainer, pl_module) if not self.block: plt.pause(0.01) else: plt.show(block=True) class VisNG2D(Vis2DAbstract): def on_epoch_end(self, trainer, pl_module): protos = pl_module.prototypes cmat = pl_module.topology_layer.cmat.cpu().numpy() # Visualize the data and the prototypes ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") ax.scatter(self.x_train[:, 0], self.x_train[:, 1], c=self.y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c="k", edgecolor="k", marker="D", s=50, ) # Draw connections for i in range(len(protos)): for j in range(len(protos)): if cmat[i][j]: ax.plot( [protos[i, 0], protos[j, 0]], [protos[i, 1], protos[j, 1]], "k-", ) if self.tensorboard: self.add_to_tensorboard(trainer, pl_module) if not self.block: plt.pause(0.01) else: plt.show(block=True)