"""k-NN example using the Iris dataset from scikit-learn.""" import argparse import logging import warnings import prototorch as pt import pytorch_lightning as pl import torch from prototorch.models import KNN, VisGLVQ2D from pytorch_lightning.utilities.warnings import PossibleUserWarning from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from torch.utils.data import DataLoader warnings.filterwarnings("ignore", category=PossibleUserWarning) if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset X, y = load_iris(return_X_y=True) X = X[:, 0:3:2] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=42, ) train_ds = pt.datasets.NumpyDataset(X_train, y_train) test_ds = pt.datasets.NumpyDataset(X_test, y_test) # Dataloaders train_loader = DataLoader(train_ds, batch_size=16) test_loader = DataLoader(test_ds, batch_size=16) # Hyperparameters hparams = dict(k=5) # Initialize the model model = KNN(hparams, data=train_ds) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Summary logging.info(model) # Callbacks vis = VisGLVQ2D( data=(X_train, y_train), resolution=200, block=True, ) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, max_epochs=1, callbacks=[ vis, ], log_every_n_steps=1, detect_anomaly=True, ) # Training loop # This is only for visualization. k-NN has no training phase. trainer.fit(model, train_loader) # Recall y_pred = model.predict(torch.tensor(X_train)) logging.info(y_pred) # Test trainer.test(model, dataloaders=test_loader)