"""LVQMLN example using all four dimensions of the Iris dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch class Backbone(torch.nn.Module): def __init__(self, input_size=4, hidden_size=10, latent_size=2): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.latent_size = latent_size self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size) self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size) self.activation = torch.nn.Sigmoid() def forward(self, x): x = self.activation(self.dense1(x)) out = self.activation(self.dense2(x)) return out if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris() # Reproducibility pl.utilities.seed.seed_everything(seed=42) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, num_workers=0, batch_size=150) # Hyperparameters hparams = dict( distribution=[1, 2, 2], proto_lr=0.001, bb_lr=0.001, ) # Initialize the backbone backbone = Backbone() # Initialize the model model = pt.models.LVQMLN( hparams, prototype_initializer=pt.components.SSI(train_ds, transform=backbone), backbone=backbone, ) # Model summary print(model) # Callbacks vis = pt.models.VisSiameseGLVQ2D( data=train_ds, map_protos=False, border=0.1, resolution=500, axis_off=True, ) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], ) # Training loop trainer.fit(model, train_loader)