"""GMLVQ example using the MNIST dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from torchvision import transforms from torchvision.datasets import MNIST if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = MNIST( "~/datasets", train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), ]), ) test_ds = MNIST( "~/datasets", train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), ]), ) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, num_workers=0, batch_size=256) test_loader = torch.utils.data.DataLoader(test_ds, num_workers=0, batch_size=256) # Hyperparameters nclasses = 10 prototypes_per_class = 2 hparams = dict( input_dim=28 * 28, latent_dim=28 * 28, distribution=(nclasses, prototypes_per_class), proto_lr=0.01, bb_lr=0.01, ) # Initialize the model model = pt.models.ImageGMLVQ( hparams, optimizer=torch.optim.Adam, prototype_initializer=pt.components.SMI(train_ds), ) # Callbacks vis = pt.models.VisImgComp( data=train_ds, nrow=5, show=False, tensorboard=True, random_data=20, add_embedding=True, embedding_data=100, flatten_data=False, ) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], ) # Training loop trainer.fit(model, train_loader)