"""LVQ1 example using the Iris dataset.""" import prototorch as pt import pytorch_lightning as pl import torch if __name__ == "__main__": # Acquire data from sklearn.datasets import load_iris x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] # Relabel classes # y_train[y_train == 0] = 3 # y_train[y_train == 1] = 4 # y_train[y_train == 2] = 6 # Dataset train_ds = pt.datasets.NumpyDataset(x_train, y_train) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, shuffle=True) # Hyperparameters num_classes = 3 prototypes_per_class = 10 hparams = dict( distribution={ # class_label: num_prototypes # 3: 1, # 4: 2, # 6: 3, 0: 1, 2: 2, 3: 3, }, lr=0.001, ) # Initialize the model model = pt.models.LVQ1( hparams, prototypes_initializer=pt.initializers.SMCI(train_ds), ) # Check if `num_classes` is correct print(f"{model.num_classes=}") assert model.num_classes == 3 # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Model summary print(model) # Callbacks vis = pt.models.VisGLVQ2D(data=(x_train, y_train), cmap="viridis", resolution=200, block=False) # Setup trainer trainer = pl.Trainer( gpus=0, max_epochs=50, callbacks=[vis], # fast_dev_run=1, ) # Get prototype labels print(f"Protoype Labels are: ", model.prototype_labels.tolist()) # Training loop trainer.fit(model, train_loader)