"""GMLVQ example using the Iris dataset.""" import argparse import warnings import prototorch as pt import pytorch_lightning as pl import torch from prototorch.models import GRLVQ, VisSiameseGLVQ2D from pytorch_lightning.utilities.seed import seed_everything from pytorch_lightning.utilities.warnings import PossibleUserWarning from torch.optim.lr_scheduler import ExponentialLR from torch.utils.data import DataLoader warnings.filterwarnings("ignore", category=PossibleUserWarning) warnings.filterwarnings("ignore", category=UserWarning) if __name__ == "__main__": # Reproducibility seed_everything(seed=4) # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris([0, 1]) # Dataloaders train_loader = DataLoader(train_ds, batch_size=64) # Hyperparameters hparams = dict( input_dim=2, distribution={ "num_classes": 3, "per_class": 2 }, proto_lr=0.01, bb_lr=0.01, ) # Initialize the model model = GRLVQ( hparams, optimizer=torch.optim.Adam, prototypes_initializer=pt.initializers.SMCI(train_ds), lr_scheduler=ExponentialLR, lr_scheduler_kwargs=dict(gamma=0.99, verbose=False), ) # Compute intermediate input and output sizes model.example_input_array = torch.zeros(4, 2) # Callbacks vis = VisSiameseGLVQ2D(data=train_ds) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, ], max_epochs=5, log_every_n_steps=1, detect_anomaly=True, ) # Training loop trainer.fit(model, train_loader) torch.save(model, "iris.pth")