"""CBC example using the spirals dataset. This example shows how to jump start a model by transferring weights from another more stable model. """ import numpy as np import pytorch_lightning as pl import torch from matplotlib import pyplot as plt from prototorch.datasets.abstract import NumpyDataset from torch.utils.data import DataLoader from prototorch.models.cbc import CBC from prototorch.models.glvq import GLVQ class VisualizationCallback(pl.Callback): def __init__( self, x_train, y_train, prototype_model=True, title="Prototype Visualization", cmap="viridis", ): super().__init__() self.x_train = x_train self.y_train = y_train self.title = title self.fig = plt.figure(self.title) self.cmap = cmap self.prototype_model = prototype_model def on_epoch_end(self, trainer, pl_module): if self.prototype_model: protos = pl_module.prototypes color = pl_module.prototype_labels else: protos = pl_module.components color = "k" ax = self.fig.gca() ax.cla() ax.set_title(self.title) ax.set_xlabel("Data dimension 1") ax.set_ylabel("Data dimension 2") ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, edgecolor="k") ax.scatter( protos[:, 0], protos[:, 1], c=color, cmap=self.cmap, edgecolor="k", marker="D", s=50, ) x = np.vstack((x_train, protos)) x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 1 / 50), np.arange(y_min, y_max, 1 / 50)) mesh_input = np.c_[xx.ravel(), yy.ravel()] y_pred = pl_module.predict(torch.Tensor(mesh_input)) y_pred = y_pred.reshape(xx.shape) ax.contourf(xx, yy, y_pred, cmap=self.cmap, alpha=0.35) ax.set_xlim(left=x_min + 0, right=x_max - 0) ax.set_ylim(bottom=y_min + 0, top=y_max - 0) plt.pause(0.1) def make_spirals(n_samples=500, noise=0.3): def get_samples(n, delta_t): points = [] for i in range(n): r = i / n_samples * 5 t = 1.75 * i / n * 2 * np.pi + delta_t x = r * np.sin(t) + np.random.rand(1) * noise y = r * np.cos(t) + np.random.rand(1) * noise points.append([x, y]) return points n = n_samples // 2 positive = get_samples(n=n, delta_t=0) negative = get_samples(n=n, delta_t=np.pi) x = np.concatenate( [np.array(positive).reshape(n, -1), np.array(negative).reshape(n, -1)], axis=0) y = np.concatenate([np.zeros(n), np.ones(n)]) return x, y def train(model, x_train, y_train, train_loader, epochs=100): # Callbacks vis = VisualizationCallback(x_train, y_train, prototype_model=hasattr(model, "prototypes")) # Setup trainer trainer = pl.Trainer( max_epochs=epochs, callbacks=[ vis, ], ) # Training loop trainer.fit(model, train_loader) if __name__ == "__main__": # Dataset x_train, y_train = make_spirals(n_samples=1000, noise=0.3) train_ds = NumpyDataset(x_train, y_train) # Dataloaders train_loader = DataLoader(train_ds, num_workers=0, batch_size=150) # Hyperparameters hparams = dict( input_dim=x_train.shape[1], nclasses=2, prototypes_per_class=40, prototype_initializer="stratified_random", lr=0.05, ) # Initialize the model glvq_model = GLVQ(hparams, data=[x_train, y_train]) cbc_model = CBC(hparams, data=[x_train, y_train]) # Train GLVQ train(glvq_model, x_train, y_train, train_loader, epochs=10) # Transfer Prototypes cbc_model.component_layer.load_state_dict( glvq_model.proto_layer.state_dict()) # Pure-positive reasonings new_reasoning = torch.zeros_like( cbc_model.reasoning_layer.reasoning_probabilities) for i, label in enumerate(cbc_model.component_layer.prototype_labels): new_reasoning[0][0][i][int(label)] = 1.0 new_reasoning[1][0][i][1 - int(label)] = 1.0 cbc_model.reasoning_layer.reasoning_probabilities.data = new_reasoning # Train CBC train(cbc_model, x_train, y_train, train_loader, epochs=50)