"""Models based on the GLVQ framework.""" import torch from prototorch.functions.activations import get_activation from prototorch.functions.competitions import wtac from prototorch.functions.distances import ( lomega_distance, omega_distance, squared_euclidean_distance, ) from prototorch.functions.helper import get_flat from prototorch.functions.losses import glvq_loss, lvq1_loss, lvq21_loss from prototorch.modules import LambdaLayer, LossLayer from torch.nn.parameter import Parameter from .abstract import ImagePrototypesMixin, SupervisedPrototypeModel class GLVQ(SupervisedPrototypeModel): """Generalized Learning Vector Quantization.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) # Default hparams self.hparams.setdefault("transfer_fn", "identity") self.hparams.setdefault("transfer_beta", 10.0) # Layers transfer_fn = get_activation(self.hparams.transfer_fn) self.transfer_layer = LambdaLayer(transfer_fn) # Loss self.loss = LossLayer(glvq_loss) # Prototype metrics self.initialize_prototype_win_ratios() def initialize_prototype_win_ratios(self): self.register_buffer( "prototype_win_ratios", torch.zeros(self.num_prototypes, device=self.device)) def on_epoch_start(self): self.initialize_prototype_win_ratios() def log_prototype_win_ratios(self, distances): batch_size = len(distances) prototype_wc = torch.zeros(self.num_prototypes, dtype=torch.long, device=self.device) wi, wc = torch.unique(distances.min(dim=-1).indices, sorted=True, return_counts=True) prototype_wc[wi] = wc prototype_wr = prototype_wc / batch_size self.prototype_win_ratios = torch.vstack([ self.prototype_win_ratios, prototype_wr, ]) def shared_step(self, batch, batch_idx, optimizer_idx=None): x, y = batch out = self.compute_distances(x) plabels = self.proto_layer.component_labels mu = self.loss(out, y, prototype_labels=plabels) batch_loss = self.transfer_layer(mu, beta=self.hparams.transfer_beta) loss = batch_loss.sum(dim=0) return out, loss def training_step(self, batch, batch_idx, optimizer_idx=None): out, train_loss = self.shared_step(batch, batch_idx, optimizer_idx) self.log_prototype_win_ratios(out) self.log("train_loss", train_loss) self.log_acc(out, batch[-1], tag="train_acc") return train_loss def validation_step(self, batch, batch_idx): # `model.eval()` and `torch.no_grad()` handled by pl out, val_loss = self.shared_step(batch, batch_idx) self.log("val_loss", val_loss) self.log_acc(out, batch[-1], tag="val_acc") return val_loss def test_step(self, batch, batch_idx): # `model.eval()` and `torch.no_grad()` handled by pl out, test_loss = self.shared_step(batch, batch_idx) self.log_acc(out, batch[-1], tag="test_acc") return test_loss def test_epoch_end(self, outputs): test_loss = 0.0 for batch_loss in outputs: test_loss += batch_loss.item() self.log("test_loss", test_loss) # TODO # def predict_step(self, batch, batch_idx, dataloader_idx=None): # pass class SiameseGLVQ(GLVQ): """GLVQ in a Siamese setting. GLVQ model that applies an arbitrary transformation on the inputs and the prototypes before computing the distances between them. The weights in the transformation pipeline are only learned from the inputs. """ def __init__(self, hparams, backbone=torch.nn.Identity(), both_path_gradients=False, **kwargs): distance_fn = kwargs.pop("distance_fn", squared_euclidean_distance) super().__init__(hparams, distance_fn=distance_fn, **kwargs) self.backbone = backbone self.both_path_gradients = both_path_gradients def configure_optimizers(self): proto_opt = self.optimizer(self.proto_layer.parameters(), lr=self.hparams.proto_lr) optimizer = None if list(self.backbone.parameters()): # only add an optimizer is the backbone has trainable parameters # otherwise, the next line fails bb_opt = self.optimizer(self.backbone.parameters(), lr=self.hparams.bb_lr) optimizer = [proto_opt, bb_opt] else: optimizer = proto_opt if self.lr_scheduler is not None: scheduler = self.lr_scheduler(optimizer, **self.lr_scheduler_kwargs) sch = { "scheduler": scheduler, "interval": "step", } # called after each training step return optimizer, [sch] else: return optimizer def compute_distances(self, x): protos, _ = self.proto_layer() latent_x = self.backbone(x) self.backbone.requires_grad_(self.both_path_gradients) latent_protos = self.backbone(protos) self.backbone.requires_grad_(True) distances = self.distance_layer(latent_x, latent_protos) return distances def predict_latent(self, x, map_protos=True): """Predict `x` assuming it is already embedded in the latent space. Only the prototypes are embedded in the latent space using the backbone. """ self.eval() with torch.no_grad(): protos, plabels = self.proto_layer() if map_protos: protos = self.backbone(protos) d = self.distance_layer(x, protos) y_pred = wtac(d, plabels) return y_pred class GRLVQ(SiameseGLVQ): """Generalized Relevance Learning Vector Quantization. TODO Make a RelevanceLayer. `bb_lr` is ignored otherwise. """ def __init__(self, hparams, **kwargs): distance_fn = kwargs.pop("distance_fn", omega_distance) super().__init__(hparams, distance_fn=distance_fn, **kwargs) relevances = torch.ones(self.hparams.input_dim, device=self.device) self.register_parameter("_relevances", Parameter(relevances)) # Override the backbone. self.backbone = LambdaLayer(lambda x: x @ torch.diag(self.relevances), name="relevances") @property def relevance_profile(self): return self.relevances.detach().cpu() def compute_distances(self, x): protos, _ = self.proto_layer() distances = self.distance_layer(x, protos, torch.diag(self.relevances)) return distances class SiameseGMLVQ(SiameseGLVQ): """Generalized Matrix Learning Vector Quantization. Implemented as a Siamese network with a linear transformation backbone. """ def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) # Override the backbone. self.backbone = torch.nn.Linear(self.hparams.input_dim, self.hparams.latent_dim, bias=False) @property def omega_matrix(self): return self.backbone.weight.detach().cpu() @property def lambda_matrix(self): omega = self.backbone.weight # (latent_dim, input_dim) lam = omega.T @ omega return lam.detach().cpu() def compute_distances(self, x): protos, _ = self.proto_layer() x, protos = get_flat(x, protos) latent_x = self.backbone(x) self.backbone.requires_grad_(self.both_path_gradients) latent_protos = self.backbone(protos) self.backbone.requires_grad_(True) distances = self.distance_layer(latent_x, latent_protos) return distances class LVQMLN(SiameseGLVQ): """Learning Vector Quantization Multi-Layer Network. GLVQ model that applies an arbitrary transformation on the inputs, BUT NOT on the prototypes before computing the distances between them. This of course, means that the prototypes no longer live the input space, but rather in the embedding space. """ def compute_distances(self, x): latent_protos, _ = self.proto_layer() latent_x = self.backbone(x) distances = self.distance_layer(latent_x, latent_protos) return distances class GMLVQ(GLVQ): """Generalized Matrix Learning Vector Quantization. Implemented as a regular GLVQ network that simply uses a different distance function. """ def __init__(self, hparams, **kwargs): distance_fn = kwargs.pop("distance_fn", omega_distance) super().__init__(hparams, distance_fn=distance_fn, **kwargs) omega = torch.randn(self.hparams.input_dim, self.hparams.latent_dim, device=self.device) self.register_parameter("_omega", Parameter(omega)) def compute_distances(self, x): protos, _ = self.proto_layer() distances = self.distance_layer(x, protos, self._omega) return distances def extra_repr(self): return f"(omega): (shape: {tuple(self._omega.shape)})" class LGMLVQ(GMLVQ): """Localized and Generalized Matrix Learning Vector Quantization.""" def __init__(self, hparams, **kwargs): distance_fn = kwargs.pop("distance_fn", lomega_distance) super().__init__(hparams, distance_fn=distance_fn, **kwargs) # Re-register `_omega` to override the one from the super class. omega = torch.randn( self.num_prototypes, self.hparams.input_dim, self.hparams.latent_dim, device=self.device, ) self.register_parameter("_omega", Parameter(omega)) class GLVQ1(GLVQ): """Generalized Learning Vector Quantization 1.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.loss = LossLayer(lvq1_loss) self.optimizer = torch.optim.SGD class GLVQ21(GLVQ): """Generalized Learning Vector Quantization 2.1.""" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.loss = LossLayer(lvq21_loss) self.optimizer = torch.optim.SGD class ImageGLVQ(ImagePrototypesMixin, GLVQ): """GLVQ for training on image data. GLVQ model that constrains the prototypes to the range [0, 1] by clamping after updates. """ class ImageGMLVQ(ImagePrototypesMixin, GMLVQ): """GMLVQ for training on image data. GMLVQ model that constrains the prototypes to the range [0, 1] by clamping after updates. """