"""Probabilistic GLVQ methods""" import torch from .glvq import GLVQ # HELPER # TODO: Refactor into general files, if usefull def probability(distance, variance): return torch.exp(-(distance * distance) / (2 * variance)) def grouped_sum(value: torch.Tensor, labels: torch.LongTensor) -> (torch.Tensor, torch.LongTensor): """Group-wise average for (sparse) grouped tensors Args: value (torch.Tensor): values to average (# samples, latent dimension) labels (torch.LongTensor): labels for embedding parameters (# samples,) Returns: result (torch.Tensor): (# unique labels, latent dimension) new_labels (torch.LongTensor): (# unique labels,) Examples: >>> samples = torch.Tensor([ [0.15, 0.15, 0.15], #-> group / class 1 [0.2, 0.2, 0.2], #-> group / class 3 [0.4, 0.4, 0.4], #-> group / class 3 [0.0, 0.0, 0.0] #-> group / class 0 ]) >>> labels = torch.LongTensor([1, 5, 5, 0]) >>> result, new_labels = groupby_mean(samples, labels) >>> result tensor([[0.0000, 0.0000, 0.0000], [0.1500, 0.1500, 0.1500], [0.3000, 0.3000, 0.3000]]) >>> new_labels tensor([0, 1, 5]) """ uniques = labels.unique(sorted=True).tolist() labels = labels.tolist() key_val = {key: val for key, val in zip(uniques, range(len(uniques)))} labels = torch.LongTensor(list(map(key_val.get, labels))) labels = labels.view(labels.size(0), 1).expand(-1, value.size(1)) unique_labels = labels.unique(dim=0) result = torch.zeros_like(unique_labels, dtype=torch.float).scatter_add_( 0, labels, value) return result.T def likelihood_loss(probabilities, target, prototype_labels): uniques = prototype_labels.unique(sorted=True).tolist() labels = target.tolist() key_val = {key: val for key, val in zip(uniques, range(len(uniques)))} target_indices = torch.LongTensor(list(map(key_val.get, labels))) whole_probability = probabilities.sum(dim=1) correct_probability = probabilities[torch.arange(len(probabilities)), target_indices] wrong_probability = whole_probability - correct_probability likelihood = correct_probability / wrong_probability log_likelihood = torch.log(likelihood) return log_likelihood def robust_soft_loss(probabilities, target, prototype_labels): uniques = prototype_labels.unique(sorted=True).tolist() labels = target.tolist() key_val = {key: val for key, val in zip(uniques, range(len(uniques)))} target_indices = torch.LongTensor(list(map(key_val.get, labels))) whole_probability = probabilities.sum(dim=1) correct_probability = probabilities[torch.arange(len(probabilities)), target_indices] likelihood = correct_probability / whole_probability log_likelihood = torch.log(likelihood) return log_likelihood class LikelihoodRatioLVQ(GLVQ): """Learning Vector Quantization based on Likelihood Ratios Based on "Soft Learning Vector Quantization" from Sambu Seo and Klaus Obermayer (2003). """ def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.conditional_distribution = probability def forward(self, x): distances = self._forward(x) conditional = self.conditional_distribution(distances, self.hparams.variance) prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item() posterior = conditional * prior plabels = torch.LongTensor(self.proto_layer.component_labels) y_pred = grouped_sum(posterior.T, plabels) return y_pred def training_step(self, batch, batch_idx, optimizer_idx=None): X, y = batch out = self.forward(X) plabels = self.proto_layer.component_labels batch_loss = -likelihood_loss(out, y, prototype_labels=plabels) loss = batch_loss.sum(dim=0) return loss def predict(self, x): probabilities = self.forward(x) confidence, prediction = torch.max(probabilities, dim=1) prediction[confidence < 0.1] = -1 return prediction class RSLVQ(GLVQ): """Learning Vector Quantization based on Likelihood Ratios Based on "Soft Learning Vector Quantization" from Sambu Seo and Klaus Obermayer (2003). """ def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) self.conditional_distribution = probability def forward(self, x): distances = self._forward(x) conditional = self.conditional_distribution(distances, self.hparams.variance) prior = 1.0 / torch.Tensor(self.proto_layer.distribution).sum().item() posterior = conditional * prior plabels = torch.LongTensor(self.proto_layer.component_labels) y_pred = grouped_sum(posterior.T, plabels) return y_pred def training_step(self, batch, batch_idx, optimizer_idx=None): X, y = batch out = self.forward(X) plabels = self.proto_layer.component_labels batch_loss = -robust_soft_loss(out, y, prototype_labels=plabels) loss = batch_loss.sum(dim=0) return loss def predict(self, x): probabilities = self.forward(x) confidence, prediction = torch.max(probabilities, dim=1) #prediction[confidence < 0.1] = -1 return prediction __all__ = ["LikelihoodRatioLVQ", "probability", "grouped_sum"]