"""GLVQ example using the Iris dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from sklearn.datasets import load_iris if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset x_train, y_train = load_iris(return_X_y=True) x_train = x_train[:, [0, 2]] train_ds = pt.datasets.NumpyDataset(x_train, y_train) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, num_workers=0, batch_size=150) # Hyperparameters num_classes = 3 prototypes_per_class = 2 hparams = dict( distribution=(num_classes, prototypes_per_class), lr=0.01, ) # Initialize the model model = pt.models.GLVQ(hparams, optimizer=torch.optim.Adam, prototype_initializer=pt.components.SMI(train_ds)) # Callbacks vis = pt.models.VisGLVQ2D(data=(x_train, y_train), block=False) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], ) # Training loop trainer.fit(model, train_loader)