"""CBC example using the Iris dataset.""" import argparse import warnings import prototorch as pt import pytorch_lightning as pl from lightning_fabric.utilities.seed import seed_everything from prototorch.models import CBC, VisCBC2D from pytorch_lightning.utilities.warnings import PossibleUserWarning from torch.utils.data import DataLoader warnings.filterwarnings("ignore", category=PossibleUserWarning) warnings.filterwarnings("ignore", category=UserWarning) if __name__ == "__main__": # Reproducibility seed_everything(seed=4) # Command-line arguments parser = argparse.ArgumentParser() parser.add_argument("--gpus", type=int, default=0) parser.add_argument("--fast_dev_run", type=bool, default=False) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris(dims=[0, 2]) # Dataloaders train_loader = DataLoader(train_ds, batch_size=32) # Hyperparameters hparams = dict( distribution=[1, 0, 3], margin=0.1, proto_lr=0.01, bb_lr=0.01, ) # Initialize the model model = CBC( hparams, components_initializer=pt.initializers.SSCI(train_ds, noise=0.1), reasonings_initializer=pt.initializers. PurePositiveReasoningsInitializer(), ) # Callbacks vis = VisCBC2D( data=train_ds, title="CBC Iris Example", resolution=100, axis_off=True, ) # Setup trainer trainer = pl.Trainer( accelerator="cuda" if args.gpus else "cpu", devices=args.gpus if args.gpus else "auto", fast_dev_run=args.fast_dev_run, callbacks=[ vis, ], detect_anomaly=True, log_every_n_steps=1, max_epochs=1000, ) # Training loop trainer.fit(model, train_loader)